Bài 5.44 trang 89 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu và chính xác nhất cho bài tập này, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho hình vuông \({H_1}\) có cạnh bằng a.
Đề bài
Cho hình vuông \({H_1}\) có cạnh bằng a. Chia mỗi cạnh của hình vuông này thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông \({H_2}\) Lặp lại cách làm như trên với hình vuông \({H_2}\) để được hình vuông \({H_3}\).
Tiếp tục quá trình trên ta nhận được dãy hình vuông \({H_1},\,{H_2},\,{H_3},...,{H_n},...\) Gọi \({s_n}\) là diện tích của hình vuông \({H_n}\).
Phương pháp giải - Xem chi tiết
Tính lần lượt các cạnh hình vuông \({H_2}\), diện tích hình vuông \({H_2}\) rồi suy ra công thức tính diện tích \({H_1},\,{H_2},\,{H_3},...,{H_n},...\) Dùng công thức tính tổng cấp số nhân lùi vô hạn để tính ra diện tích của hình vuông \({H_n}\).
Lời giải chi tiết
Cạnh của hình vuông \({H_2}\) là \({a_2} = \sqrt {{{\left( {\frac{a}{4}} \right)}^2} + {{\left( {\frac{{3a}}{4}} \right)}^2}} = \sqrt {\frac{5}{8}} a.\)
Khi đó \({s_2} = \frac{5}{8}{a^2} = \frac{5}{8}{s_1}\).
Lí luận tương tự, ta có \({s_3} = \frac{5}{8}{s_2},...,{s_n} = \frac{5}{8}{s_{n - 1}} = {\left( {\frac{5}{8}} \right)^{n - 1}}{a^2}\). Từ đó
\(T = {s_1} + {s_2} + ... + {s_n} + ... = {a^2}\left[ {1 + \frac{5}{8} + {{\left( {\frac{5}{8}} \right)}^2} + ... + {{\left( {\frac{5}{8}} \right)}^{n - 1}} + ...} \right] = \frac{{8{a^2}}}{3}\).
Bài 5.44 trang 89 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài toán về ứng dụng của đường thẳng và mặt phẳng trong không gian. Để giải bài toán này, học sinh cần nắm vững các kiến thức cơ bản về:
Dưới đây là hướng dẫn chi tiết cách giải bài 5.44 trang 89 sách bài tập Toán 11 - Kết nối tri thức:
Đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Vẽ hình minh họa để hình dung rõ hơn về bài toán.
Chọn một hệ tọa độ thích hợp để biểu diễn các điểm và đường thẳng trong không gian. Xác định tọa độ của các điểm đã cho.
Sử dụng các công thức và kiến thức đã học để tìm phương trình của đường thẳng và mặt phẳng cần tìm.
Giải các phương trình để tìm ra các giá trị cần tìm. Kiểm tra lại kết quả để đảm bảo tính chính xác.
Giả sử đề bài yêu cầu tìm giao điểm của đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z = 5.
Thay phương trình đường thẳng d vào phương trình mặt phẳng (P), ta được:
2(1 + t) - (2 - t) + (3 + 2t) = 5
2 + 2t - 2 + t + 3 + 2t = 5
5t + 3 = 5
5t = 2
t = 2/5
Thay t = 2/5 vào phương trình đường thẳng d, ta được:
x = 1 + 2/5 = 7/5
y = 2 - 2/5 = 8/5
z = 3 + 2(2/5) = 3 + 4/5 = 19/5
Vậy giao điểm của đường thẳng d và mặt phẳng (P) là điểm (7/5, 8/5, 19/5).
Bài 5.44 trang 89 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài tập và đạt kết quả tốt.
Để luyện tập thêm, các em học sinh có thể tham khảo các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức với cuộc sống hoặc trên các trang web học toán online.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục môn Toán. Chúc các em học tập tốt!