Logo Header
  1. Môn Toán
  2. Giải bài 5.33 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 5.33 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 5.33 trang 88 Sách bài tập Toán 11 - Kết nối tri thức

Bài 5.33 trang 88 sách bài tập Toán 11 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Biết hàm số \(f(x) = \left\{ \begin{array}{l}{x^2} + a\,\,\,{\rm{khi}}\,\,x \le 1\\2x + b\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\)

Đề bài

Biết hàm số \(f(x) = \left\{ \begin{array}{l}{x^2} + a\,\,\,{\rm{khi}}\,\,x \le 1\\2x + b\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\) có giới hạn khi \(x \to 1\). Giá trị của \(a - b\) bằng

A. \( - 1\)

B. 0

C. 1

D. 3.

Phương pháp giải - Xem chi tiếtGiải bài 5.33 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Dựa vào lý thuyết \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) để tính giá trị \(a - b\).

Lời giải chi tiết

Đáp án C.

Giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1_{}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).

Nên \(\mathop {\lim }\limits_{x \to 1_{}^ + } \left( {{x^2} + a} \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {2x + b} \right) \Rightarrow 1 + a = 2.1 + b \Rightarrow a - b = 1\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 5.33 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng học toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài viết liên quan

Giải bài 5.33 trang 88 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 5.33 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài này, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Sử dụng các quy tắc đạo hàm để tìm f'(x).
  3. Tìm điểm dừng: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng không.
  4. Lập bảng biến thiên: Xác định dấu của f'(x) trên các khoảng xác định bởi các điểm dừng để xác định khoảng hàm số đồng biến, nghịch biến.
  5. Tìm cực trị: Dựa vào bảng biến thiên để xác định các điểm cực đại, cực tiểu.
  6. Khảo sát giới hạn: Tính giới hạn của hàm số khi x tiến tới vô cùng và các điểm gián đoạn.
  7. Vẽ đồ thị hàm số: Sử dụng các thông tin đã thu thập để vẽ đồ thị hàm số.

Lời giải chi tiết bài 5.33 trang 88

Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần khảo sát là f(x) = x3 - 3x2 + 2.

  1. Tập xác định: Hàm số xác định trên R.
  2. Đạo hàm bậc nhất: f'(x) = 3x2 - 6x.
  3. Điểm dừng: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  4. Bảng biến thiên:
    x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  5. Cực trị:
    • Điểm cực đại: x = 0, f(0) = 2.
    • Điểm cực tiểu: x = 2, f(2) = -2.
  6. Giới hạn:
    • limx→-∞ f(x) = -∞
    • limx→+∞ f(x) = +∞

Ứng dụng của đạo hàm trong giải bài 5.33

Đạo hàm đóng vai trò then chốt trong việc giải bài 5.33. Nó giúp chúng ta xác định được các khoảng mà hàm số đồng biến, nghịch biến, từ đó tìm ra các điểm cực trị. Việc hiểu rõ ứng dụng của đạo hàm không chỉ giúp giải quyết bài toán này mà còn là nền tảng vững chắc cho việc học tập các kiến thức toán học nâng cao.

Mẹo giải nhanh bài 5.33

Để giải nhanh bài 5.33, bạn nên:

  • Nắm vững các quy tắc đạo hàm cơ bản.
  • Thực hành giải nhiều bài tập tương tự để làm quen với các dạng bài.
  • Sử dụng máy tính cầm tay để tính toán nhanh chóng.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo thêm

Để hiểu sâu hơn về đạo hàm và ứng dụng của đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Kết nối tri thức với cuộc sống.
  • Sách bài tập Toán 11 - Kết nối tri thức với cuộc sống.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.

Kết luận

Bài 5.33 trang 88 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11