Bài 9.40 trang 65 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Chuyển động của một vật có phương trình \(s = 5 + {\rm{sin}}\left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Đề bài
Chuyển động của một vật có phương trình \(s = 5 + {\rm{sin}}\left( {0,8\pi t + \frac{\pi }{6}} \right)\), ở đó tính bằng centimét và thời gian tính bằng giây. Tại các thời điểm vận tốc bằng 0, giá trị tuyệt đối của gia tốc của vật gần với giá trị nào sau đây nhất?
A. \(4,5\,{\rm{cm/}}{{\rm{s}}^2}\).
B. \(5,5\,{\rm{cm/}}{{\rm{s}}^2}\).
C. \(6,3\,{\rm{cm/}}{{\rm{s}}^2}\).
D. \(7,1\,{\rm{cm/}}{{\rm{s}}^2}\).
Phương pháp giải - Xem chi tiết
\(v(t) = s'(t) = 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
\(a(t) = s''(t) = - {\left( {0,8\pi } \right)^2}.\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Cho vận tốc bằng 0 suy ra \(\cos \left( {0,8\pi t + \frac{\pi }{6}} \right) \Rightarrow \sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Khi đó giá trị tuyệt đối của gia tốc của vật \(\left| {a(t)} \right| = {\left( {0,8\pi } \right)^2}.\left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right|\)
Lời giải chi tiết
\(v(t) = s'(t) = 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
\(a(t) = s''(t) = - {\left( {0,8\pi } \right)^2}.\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)\)
Vận tốc bằng 0\( \Rightarrow 0,8\pi .\cos \left( {0,8\pi t + \frac{\pi }{6}} \right) = 0 \Leftrightarrow \cos \left( {0,8\pi t + \frac{\pi }{6}} \right) = 0 \Rightarrow \left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right| = 1\)
Khi đó giá trị tuyệt đối của gia tốc của vật \(\left| {a(t)} \right| = {\left( {0,8\pi } \right)^2}.\left| {\sin \left( {0,8\pi t + \frac{\pi }{6}} \right)} \right| = {\left( {0,8\pi } \right)^2}.1 \approx 6,3\)
Bài 9.40 trang 65 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài toán thuộc chương trình hình học không gian, cụ thể là phần đường thẳng và mặt phẳng trong không gian. Để giải bài toán này, học sinh cần nắm vững các kiến thức cơ bản như:
Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các điểm, đường thẳng, mặt phẳng trong không gian và yêu cầu tính toán một đại lượng nào đó (ví dụ: khoảng cách, góc, độ dài).
Để giải bài 9.40 trang 65, ta thực hiện theo các bước sau:
Ví dụ, nếu bài toán yêu cầu tính khoảng cách từ điểm A đến mặt phẳng (P), ta có thể sử dụng công thức sau:
d(A, (P)) = |Ax0 + By0 + Cz0 + D| / √(A2 + B2 + C2)
Trong đó:
Ngoài bài 9.40, còn rất nhiều bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức với cuộc sống. Các bài tập này thường yêu cầu học sinh vận dụng các kiến thức và kỹ năng đã học để giải quyết các bài toán thực tế. Một số dạng bài tập thường gặp bao gồm:
Để giải các bài tập về đường thẳng và mặt phẳng trong không gian một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Bài 9.40 trang 65 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về đường thẳng và mặt phẳng trong không gian. Hy vọng với hướng dẫn chi tiết này, các bạn học sinh có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc các bạn học tốt!
Giaitoan.edu.vn luôn đồng hành cùng các bạn trên con đường chinh phục môn Toán.