Logo Header
  1. Môn Toán
  2. Giải bài 8.3 trang 46 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 8.3 trang 46 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 8.3 trang 46 Sách bài tập Toán 11 - Kết nối tri thức

Bài 8.3 trang 46 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.3 trang 46, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Có bốn chiếc hộp I, II, III, IV mỗi hộp đựng 10 tấm thẻ, đánh số từ 1 đến 10. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ

Đề bài

Có bốn chiếc hộp I, II, III, IV mỗi hộp đựng 10 tấm thẻ, đánh số từ 1 đến 10. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Gọi \(a,b,c,d\) là số ghi trên thẻ tương ứng rút từ I, II, III, IV.

 Xét các biến cố sau:

A: "\(a\) là số chẵn"; \(B\): "\(b\) là số chẵn"; \(C\): "\(c\) là số chẵn"; \(D\): "\(d\) là số chẵn";

Chứng tỏ rằng:

a) \(E = \bar A\bar D;F = \bar B\bar C\);

b) \(G = EF \cup \bar E\bar F\).

Phương pháp giải - Xem chi tiếtGiải bài 8.3 trang 46 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Áp dụng định nghĩa biến cố hợp, biến cố giao

Lời giải chi tiết

a) \(ad\)là số lẻ khi và chỉ khi cả \(a\) và \(d\) đều là số lẻ, tức là không xảy ra cả biến cố \(A\) và \(D\). Vậy \(E = \bar A\bar D.\)

 Tương tự \(bc\)là số lẻ chỉ khi cả \(b\) và \(c\) đều là số lẻ, tức là không xảy ra cả biến cố \(B\) và \(C\). Vậy \(F = \bar B\bar C\).

b) Giả sử \(G\) xảy ra, tức là \(ad\)và \(bc\)có cùng tính chẵn, lẻ. Nếu \(ad\)là số lẻ, \(bc\)là số lẻ thì \(E\) và \(F\) đều xảy ra. Do đó \(EF\)xảy ra.

Nếu \(ad\) là số chẵn, \(bc\)là số chẵn thì \(E\) và \(F\) đều không xảy ra. Do đó \(\bar E\bar F\) xảy ra.

Ngược lại, nếu \(EF\)xảy ra thì \(ad\)là số lẻ, \(bc\)là số lẻ. Suy ra \(ad - bc\) là số chẵn.

Nếu \(\bar E\bar F\) xảy ra thì \(ad\)là số chẵn, \(bc\)là số chẵn. Do đó \(ad - bc\) là số chẵn.

Vậy \(G = EF \cup \bar E\bar F\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 8.3 trang 46 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng soạn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 8.3 trang 46 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 8.3 trang 46 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng.
  • Ứng dụng của vectơ trong hình học: Chứng minh tính chất hình học, giải bài toán về khoảng cách, góc.

Nội dung bài tập 8.3 trang 46

Bài 8.3 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ trong hình.
  2. Thực hiện các phép toán vectơ để tìm các vectơ cần tính.
  3. Sử dụng tích vô hướng để tính góc giữa hai vectơ hoặc kiểm tra tính vuông góc.
  4. Vận dụng kiến thức về vectơ để chứng minh các tính chất hình học.

Lời giải chi tiết bài 8.3 trang 46

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 8.3 trang 46, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).

Lời giải:

  1. Vẽ hình: Vẽ hình chóp S.ABCD và các đường thẳng, mặt phẳng liên quan.
  2. Xác định góc cần tính: Góc giữa đường thẳng SB và mặt phẳng (ABCD) chính là góc giữa SB và hình chiếu của SB lên mặt phẳng (ABCD), tức là góc giữa SB và AB.
  3. Tính độ dài các cạnh: Sử dụng định lý Pitago để tính độ dài SB. SB = √(SA² + AB²) = √(a² + a²) = a√2.
  4. Tính góc: Tính góc SBA bằng công thức sin(SBA) = SA/SB = a/(a√2) = 1/√2. Suy ra góc SBA = 45°.

Vậy, góc giữa đường thẳng SB và mặt phẳng (ABCD) là 45°.

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững định nghĩa và các phép toán vectơ.
  • Vẽ hình chính xác và đầy đủ.
  • Sử dụng các công thức và định lý liên quan một cách linh hoạt.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, các em học sinh có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng về vectơ trên YouTube.
  • Các diễn đàn học toán để trao đổi và học hỏi kinh nghiệm.

Kết luận

Bài 8.3 trang 46 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập.

Tài liệu, đề thi và đáp án Toán 11