Logo Header
  1. Môn Toán
  2. Giải bài 2.15 trang 37 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 2.15 trang 37 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 2.15 trang 37 Sách bài tập Toán 11 - Kết nối tri thức

Bài 2.15 trang 37 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và các phép toán vectơ. Bài tập này thường yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.15 trang 37 sách bài tập Toán 11 Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Phải lấy tổng của bao nhiêu số hạng đầu của một cấp số cộng có số hạng đầu là 78 và công sai là \( - 4\) để được tổng là 702?

Đề bài

Phải lấy tổng của bao nhiêu số hạng đầu của một cấp số cộng có số hạng đầu là 78 và công sai là \( - 4\) để được tổng là 702?

Phương pháp giải - Xem chi tiếtGiải bài 2.15 trang 37 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Sử dụng công thức tính tổng của n số hạng đầu của cấp số cộng:

\({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right]\)

Lời giải chi tiết

Áp dụng công thức tính tổng của n số hạng đầu của cấp số cộng ta có:

\(\frac{n}{2}\left[ {2.78 + \left( {n - 1} \right)\left( { - 4} \right)} \right] = 702 \Leftrightarrow n\left( {160 - 4n} \right) = 1404 \Leftrightarrow - 4{n^2} + 160n - 1404 = 0\)

Suy ra \(n = 13\) hoặc \(n = 27\), tức là ta cần lấy 13 hoặc 27 số hạng đầu.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2.15 trang 37 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2.15 trang 37 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.15 trang 37 sách bài tập Toán 11 Kết nối tri thức thường xoay quanh việc áp dụng các tính chất của vectơ, các phép toán cộng, trừ, nhân với một số thực, và tích vô hướng để giải quyết các bài toán hình học phẳng. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Định nghĩa, tính chất, ứng dụng.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ, các phép toán vectơ trong hệ tọa độ.

Phân tích bài toán và phương pháp giải

Trước khi bắt tay vào giải bài 2.15 trang 37, học sinh cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần lựa chọn phương pháp giải phù hợp. Một số phương pháp thường được sử dụng bao gồm:

  1. Phương pháp hình học: Sử dụng các tính chất hình học để chứng minh hoặc tính toán.
  2. Phương pháp tọa độ: Sử dụng hệ tọa độ để biểu diễn các vectơ và thực hiện các phép toán.
  3. Phương pháp vectơ: Sử dụng các tính chất của vectơ để giải quyết bài toán.

Lời giải chi tiết bài 2.15 trang 37

(Giả sử đề bài là: Cho tam giác ABC. Gọi M là trung điểm của BC. Tìm vectơ AM theo vectơ AB và AC.)

Lời giải:

Ta có: AM = AB + BM

Vì M là trung điểm của BC nên BM = MC = 1/2 BC

BC = AC - AB

Do đó, BM = 1/2 (AC - AB)

Thay vào phương trình ban đầu, ta được:

AM = AB + 1/2 (AC - AB) = 1/2 AB + 1/2 AC

Vậy AM = 1/2 (AB + AC)

Các bài tập tương tự và luyện tập

Để củng cố kiến thức về vectơ và các phép toán vectơ, học sinh có thể luyện tập thêm các bài tập tương tự sau:

  • Bài 2.16 trang 37 sách bài tập Toán 11 Kết nối tri thức
  • Bài 2.17 trang 37 sách bài tập Toán 11 Kết nối tri thức
  • Các bài tập về tích vô hướng trong sách giáo khoa và sách bài tập Toán 11

Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, học sinh cần lưu ý một số điểm sau:

  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Sử dụng các tính chất của vectơ một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Kết luận

Bài 2.15 trang 37 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11