Bài 4.6 trang 55 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.6 trang 55, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc cạnh AB, AC sao cho \({\rm{AE}} = \frac{1}{2}{\rm{BE}}\)
Đề bài
Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt thuộc cạnh AB, AC sao cho \({\rm{AE}} = \frac{1}{2}{\rm{BE}}\) và AF = 2CF. Gọi O là một điểm nằm trong tam giác BCD.
a) Xác định giao tuyến của hai mặt phẳng (OEF) và (ABD).
b) Xác định giao điểm (nếu có) của đường thẳng AD và mặt phẳng (OEF).
Phương pháp giải - Xem chi tiết
Để xác định giao tuyến của hai mặt phẳng, ta tìm hai điểm chung (phân biệt) của hai mặt phẳng đó.
Để xác định giao điểm của đường thẳng d và mặt phẳng (P), ta tìm một đường thẳng trong mặt phẳng (P) sao cho đường thẳng đó đồng phẳng với d. Xác giao điểm của đường thẳng đó với d. Giao điểm ấy chính là giao điểm giữa đường thẳng d và mặt phẳng (P).
Lời giải chi tiết
a) Ta thấy E thuộc AB, nằm trong mặt phẳng (ABD). Vậy E là điểm chung thứ nhất của hai mặt phẳng (ABD) và (OEF).
Trong mặt phẳng (ABC) gọi G là giao điểm của EF và BC.
Trong mặt phẳng (BCD), gọi H là giao điểm của BD và OG. Vậy H là một điểm chung của hai mặt phẳng (OEF) và (ABD)
Vậy EH là giao tuyến của hai mặt phẳng (OEF) và (ABD).
b) Trong mặt phẳng (ABD): Gọi I là giao điểm của EH và AD. Vậy I là giao điểm của AD và mặt phẳng (OEF).
Bài 4.6 trang 55 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản như:
Dưới đây là lời giải chi tiết bài 4.6 trang 55 sách bài tập Toán 11 - Kết nối tri thức:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD.
Vì SA vuông góc với mặt phẳng (ABCD) nên SA vuông góc với mọi đường thẳng nằm trong mặt phẳng (ABCD), do đó SA vuông góc với AC.
Xét tam giác SAC vuông tại A, ta có:
tan ∠SCA = SA/AC = a/(a√2) = 1/√2
Suy ra ∠SCA = arctan(1/√2)
Gọi φ là góc giữa đường thẳng SC và mặt phẳng (ABCD). Ta có:
φ = ∠SCA = arctan(1/√2)
Vậy, góc giữa đường thẳng SC và mặt phẳng (ABCD) là arctan(1/√2).
Để giải bài tập này một cách chính xác, học sinh cần:
Ngoài ra, học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác để củng cố kiến thức và rèn luyện kỹ năng giải bài tập.
Các bài tập về góc giữa đường thẳng và mặt phẳng thường yêu cầu học sinh:
Để giải quyết các dạng bài tập này, học sinh cần nắm vững các kiến thức về:
Giaitoan.edu.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên, các em học sinh sẽ hiểu rõ hơn về cách giải bài 4.6 trang 55 sách bài tập Toán 11 - Kết nối tri thức và tự tin hơn trong quá trình học tập.
Chúc các em học tốt!