Bài 9.9 trang 60 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.9 trang 60, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tính đạo hàm của các hàm số sau:
Đề bài
Tính đạo hàm của các hàm số sau:
a) \(y = \frac{{{x^2} - x + 1}}{{x + 2}}\)
b) \(y = \frac{{1 - {x^2}}}{{{x^2} + 1}}\)
Phương pháp giải - Xem chi tiết
Giả sử các hàm số \(u = u\left( x \right)\), \(v = v\left( x \right)\) có đạo hàm trên khoảng \(\left( {a;b} \right)\).
Khi đó \({\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'v - uv'}}{{{v^2}}}\,\,\left( {v = v\left( x \right) \ne 0} \right)\)
Lời giải chi tiết
\(\begin{array}{*{20}{l}}{{\rm{\;\;a)\;}}y' = {{\left( {\frac{{{x^2} - x + 1}}{{x + 2}}} \right)}^\prime } = \frac{{\left( {2x - 1} \right)(x + 2) - \left( {{x^2} - x + 1} \right)}}{{{{(x + 2)}^2}}} = \frac{{{x^2} + 4x - 3}}{{{{(x + 2)}^2}}};}&{\rm{\;}}\end{array}\)
\({\rm{b)\;}}y' = {\left( {\frac{{1 - {x^2}}}{{{x^2} + 1}}} \right)^\prime } = \frac{{ - 2x({x^2} + 1) - 2x(1 - {x^2})}}{{{{\left( {{x^2} + 1} \right)}^2}}} = - \frac{{4x}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\rm{.}}\)
Bài 9.9 trang 60 sách bài tập Toán 11 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra phương pháp giải phù hợp. Thông thường, các bài toán về vectơ trong không gian có thể được giải bằng các phương pháp sau:
(Giả sử đề bài là: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).)
Lời giải:
sin(φ) = |SB.AS| / (||SB|| * ||AS||) = |(a; 0; -a).(0; 0; a)| / (√(a2 + (-a)2) * √a2) = | -a2 | / (√(2a2) * a) = a2 / (a√2 * a) = 1/√2
=> φ = arcsin(1/√2) = 45o
Vậy, góc giữa đường thẳng SB và mặt phẳng (ABCD) là 45o.
Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Bài 9.9 trang 60 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán về vectơ trong không gian. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.