Logo Header
  1. Môn Toán
  2. Giải bài 9.9 trang 60 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 9.9 trang 60 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 9.9 trang 60 Sách bài tập Toán 11 - Kết nối tri thức

Bài 9.9 trang 60 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.9 trang 60, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Tính đạo hàm của các hàm số sau:

Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = \frac{{{x^2} - x + 1}}{{x + 2}}\)

b) \(y = \frac{{1 - {x^2}}}{{{x^2} + 1}}\)

Phương pháp giải - Xem chi tiếtGiải bài 9.9 trang 60 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Giả sử các hàm số \(u = u\left( x \right)\), \(v = v\left( x \right)\) có đạo hàm trên khoảng \(\left( {a;b} \right)\).

Khi đó \({\left( {\frac{u}{v}} \right)^\prime } = \frac{{u'v - uv'}}{{{v^2}}}\,\,\left( {v = v\left( x \right) \ne 0} \right)\)

Lời giải chi tiết

\(\begin{array}{*{20}{l}}{{\rm{\;\;a)\;}}y' = {{\left( {\frac{{{x^2} - x + 1}}{{x + 2}}} \right)}^\prime } = \frac{{\left( {2x - 1} \right)(x + 2) - \left( {{x^2} - x + 1} \right)}}{{{{(x + 2)}^2}}} = \frac{{{x^2} + 4x - 3}}{{{{(x + 2)}^2}}};}&{\rm{\;}}\end{array}\)

\({\rm{b)\;}}y' = {\left( {\frac{{1 - {x^2}}}{{{x^2} + 1}}} \right)^\prime } = \frac{{ - 2x({x^2} + 1) - 2x(1 - {x^2})}}{{{{\left( {{x^2} + 1} \right)}^2}}} = - \frac{{4x}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\rm{.}}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 9.9 trang 60 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng toán math. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 9.9 trang 60 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 9.9 trang 60 sách bài tập Toán 11 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ, tính độ dài vectơ.
  • Hệ tọa độ trong không gian: Biểu diễn vectơ bằng tọa độ và thực hiện các phép toán vectơ trong hệ tọa độ.

Phân tích bài toán

Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra phương pháp giải phù hợp. Thông thường, các bài toán về vectơ trong không gian có thể được giải bằng các phương pháp sau:

  1. Phương pháp hình học: Sử dụng các tính chất hình học của vectơ để giải quyết bài toán.
  2. Phương pháp tọa độ: Sử dụng hệ tọa độ để biểu diễn các vectơ và thực hiện các phép toán vectơ trong hệ tọa độ.
  3. Phương pháp vectơ: Sử dụng các định lý và công thức liên quan đến vectơ để giải quyết bài toán.

Lời giải chi tiết bài 9.9 trang 60

(Giả sử đề bài là: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).)

Lời giải:

  1. Chọn hệ tọa độ: Chọn A làm gốc tọa độ, AB làm trục x, AD làm trục y, AS làm trục z. Khi đó, ta có các tọa độ sau:
    • A(0; 0; 0)
    • B(a; 0; 0)
    • C(a; a; 0)
    • D(0; a; 0)
    • S(0; 0; a)
  2. Tìm vectơ chỉ phương của đường thẳng SB: Vectơ SB = (B - S) = (a; 0; -a)
  3. Tìm vectơ pháp tuyến của mặt phẳng (ABCD): Vectơ pháp tuyến của mặt phẳng (ABCD) là vectơ AS = (0; 0; a)
  4. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD): Góc giữa đường thẳng SB và mặt phẳng (ABCD) là góc giữa vectơ SB và vectơ pháp tuyến AS. Gọi góc đó là φ. Ta có:

    sin(φ) = |SB.AS| / (||SB|| * ||AS||) = |(a; 0; -a).(0; 0; a)| / (√(a2 + (-a)2) * √a2) = | -a2 | / (√(2a2) * a) = a2 / (a√2 * a) = 1/√2

    => φ = arcsin(1/√2) = 45o

Vậy, góc giữa đường thẳng SB và mặt phẳng (ABCD) là 45o.

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Nắm vững các định nghĩa, tính chất và công thức liên quan đến vectơ.
  • Lựa chọn phương pháp giải phù hợp với từng bài toán cụ thể.
  • Kiểm tra lại kết quả sau khi giải xong.

Bài tập tương tự

Để củng cố kiến thức về vectơ, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.

Kết luận

Bài 9.9 trang 60 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán về vectơ trong không gian. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11