Logo Header
  1. Môn Toán
  2. Giải bài 7.23 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.23 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.23 trang 34 Sách bài tập Toán 11 - Kết nối tri thức

Bài 7.23 trang 34 sách bài tập Toán 11 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.23, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình lập phương (ABCD.A'B'C'D') có cạnh bằng (a).

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\).

a) Tính côsin của góc giữa hai mặt phẳng \(\left( {A'BD} \right)\) và \(\left( {ABCD} \right)\).

b) Tính côsin của số đo góc nhị diện \(\left[ {A',BD,C'} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài 7.23 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Để tính góc giữa hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) ta có thể thực hiện cách sau:

Tìm hai đường thẳng \(a,b\) lần lượt vuông góc với hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\).

Khi đó góc giữa hai đường thẳng \(a,b\) chính là góc giữa hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\).

\(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\b \bot \left( \beta \right)\end{array} \right. \Rightarrow \widehat {\left( {\left( \alpha \right),\left( \beta \right)} \right)} = \widehat {\left( {a,b} \right)}\).

Áp dụng tính chất: Hình vuông có hai đường chéo vuông góc

Dựa vào tỉ số lượng giác trong tam giác vuông để tìm góc

Áp dụng định lí côsin trong tam giác

Lời giải chi tiết

Giải bài 7.23 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 2

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\), ta có: \(AO \bot BD,A'O \bot BD\) nên góc giữa hai mặt phẳng \(\left( {A'BD} \right)\) và \(\left( {ABCD} \right)\) bằng góc giữa hai đường thẳng \(AO,A'O\) mà \(\left( {AO,A'O} \right) = \widehat {AOA'}\) nên góc giữa hai mặt phẳng \(\left( {A'BD} \right)\) và \(\left( {ABCD} \right)\) bằng \(\widehat {AOA'}\).

Ta có: \(OA = \frac{{a\sqrt 2 }}{2},OA' = \sqrt {O{A^2} + A{A^{{\rm{'}}2}}} = \frac{{a\sqrt 6 }}{2}\).

Suy ra \({\rm{cos}}\widehat {AOA'} = \frac{{AO}}{{A'O}} = \frac{{\sqrt 3 }}{3}\).

b) Vì \(A'O \bot BD,CO' \bot BD\) nên góc nhị diện \(\left[ {A',BD} \right.\),\(\left. {C'} \right]\) bằng \(\widehat {{A^{\rm{'}}}OC'}\).

Ta có \(OA' = OC' = \frac{{a\sqrt 6 }}{2},A'C' = a\sqrt 2 \) nên \({\rm{cos}}\widehat {A'OC'} = \frac{{O{A^{{\rm{'}}2}} + O{C^2} - A'{C^2}}}{{2 \cdot OA' \cdot OC'}} = \frac{1}{3}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7.23 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7.23 trang 34 Sách bài tập Toán 11 - Kết nối tri thức: Phân tích chi tiết và hướng dẫn giải

Bài 7.23 trang 34 sách bài tập Toán 11 Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần thực hiện các bước sau:

  1. Xác định tập xác định của hàm số: Kiểm tra xem hàm số có điều kiện gì về tập xác định hay không.
  2. Tính đạo hàm cấp một: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm f'(x) của hàm số.
  3. Tìm điểm dừng: Giải phương trình f'(x) = 0 để tìm các điểm mà tại đó đạo hàm bằng không. Đây là các điểm nghi ngờ là cực trị.
  4. Khảo sát dấu của đạo hàm: Lập bảng xét dấu của đạo hàm f'(x) trên các khoảng xác định bởi các điểm dừng. Dựa vào bảng xét dấu, ta xác định các khoảng hàm số đồng biến, nghịch biến.
  5. Kết luận về cực trị: Dựa vào bảng xét dấu, xác định các điểm cực đại, cực tiểu của hàm số.

Lời giải chi tiết bài 7.23 trang 34

Đề bài: (Sách bài tập Toán 11 Kết nối tri thức)

Tìm các điểm cực trị của các hàm số sau:

a) f(x) = x3 - 3x2 + 2

b) f(x) = -x4 + 4x2

Giải:

a) f(x) = x3 - 3x2 + 2

  • Tập xác định: D = ℝ
  • Đạo hàm: f'(x) = 3x2 - 6x
  • Điểm dừng: 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
  • Bảng xét dấu f'(x):
x-∞02+∞
f'(x)+-+
f(x)Đồng biếnNghịch biếnĐồng biến

Kết luận: Hàm số đạt cực đại tại x = 0, f(0) = 2 và đạt cực tiểu tại x = 2, f(2) = -2

b) f(x) = -x4 + 4x2

  • Tập xác định: D = ℝ
  • Đạo hàm: f'(x) = -4x3 + 8x
  • Điểm dừng: -4x3 + 8x = 0 ⇔ -4x(x2 - 2) = 0 ⇔ x = 0 hoặc x = ±√2
  • Bảng xét dấu f'(x):
x-∞-√20√2+∞
f'(x)+-+-
f(x)Đồng biếnNghịch biếnĐồng biếnNghịch biến

Kết luận: Hàm số đạt cực đại tại x = -√2, f(-√2) = 2 và x = √2, f(√2) = 2; đạt cực tiểu tại x = 0, f(0) = 0

Lưu ý khi giải bài tập về cực trị

  • Luôn kiểm tra tập xác định của hàm số trước khi tính đạo hàm.
  • Chú ý các trường hợp đạo hàm không tồn tại tại một điểm nào đó, vì đó cũng có thể là điểm cực trị.
  • Sử dụng bảng xét dấu đạo hàm một cách cẩn thận để xác định chính xác các khoảng đồng biến, nghịch biến và các điểm cực trị.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về cách giải bài 7.23 trang 34 sách bài tập Toán 11 Kết nối tri thức và tự tin hơn trong việc giải các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11