Logo Header
  1. Môn Toán
  2. Giải bài 7.46 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.46 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.46 trang 42 sách bài tập Toán 11 - Kết nối tri thức

Bài 7.46 trang 42 sách bài tập Toán 11 thuộc chương trình học Toán 11 Kết nối tri thức với cuộc sống. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng a

Đề bài

Cho hình chóp \(S.ABCD\)có tất cả các cạnh đều bằng a, gọi \(O\) là giao điểm của \(AC\)và\(BD\). Khoản cách từ điểm \(O\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

A. \(\frac{{a\sqrt 6 }}{6}\).

B. \(\frac{{a\sqrt 3 }}{3}\).

C. \(\frac{{a\sqrt 3 }}{2}\).

D. \(\frac{{a\sqrt 6 }}{3}\).

Phương pháp giải - Xem chi tiếtGiải bài 7.46 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Tìm hình chiếu vuông góc của \(O\) lên \(\left( {SBC} \right)\) là điểm \(H\).Tính \(OH\) theo công thức đường cao của tam giác vuông.

Lời giải chi tiết

Giải bài 7.46 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 2

Tính khoảng cách từ \(O\) tới \(mp\left( {SBC} \right)\):

Gọi \(E\) là trung điểm của \(BC\).

Theo giả thiết \(SO \bot \left( {ABCD} \right) \supset BC\).

\( \Rightarrow \) \(\left\{ \begin{array}{l}BC \bot SO \subset \left( {SOE} \right)\\BC \bot OE \subset \left( {SOE} \right)\\OE \cap SO = O\end{array} \right.\) \( \Rightarrow \) \(BC \bot \left( {SOE} \right)\) mà \(BC \subset \left( {SBC} \right)\)\( \Rightarrow \) \(\left( {SBC} \right) \bot \left( {SOE} \right)\).

Gọi \(H\) là hình chiếu vuông góc của \(O\) lên \(SE\)\( \Rightarrow OH \bot SE = \left( {SBC} \right) \cap \left( {SOE} \right)\), suy ra \(OH \bot \left( {SBC} \right)\) nên \(d\left( {O,\left( {SBC} \right)} \right) = OH\).

Ta có \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \frac{{a\sqrt 2 }}{2}\).

Trong \(\Delta SOE\) vuông tại \(O\), ta có:

\(\frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{O{S^2}}} = \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} = \frac{6}{{{a^2}}}\) \( \Rightarrow \) \(OH = \frac{a}{{\sqrt 6 }}\)

\( \Rightarrow \)\(d\left( {O,\left( {SCD} \right)} \right) = OH = \frac{a}{{\sqrt 6 }} = \frac{{a\sqrt 6 }}{6}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7.46 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7.46 trang 42 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 7.46 trang 42 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh tìm đạo hàm của hàm số, xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số, và tìm cực trị của hàm số.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, học sinh cần đọc kỹ đề bài để hiểu rõ yêu cầu của bài toán. Xác định hàm số cần xét, các điều kiện ràng buộc (nếu có), và mục tiêu của bài toán (ví dụ: tìm đạo hàm, tìm cực trị, khảo sát hàm số).

Áp dụng kiến thức về đạo hàm

Để giải bài 7.46, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x được định nghĩa là giới hạn của tỷ số giữa độ biến thiên của hàm số và độ biến thiên của đối số khi độ biến thiên của đối số tiến tới 0.
  • Các quy tắc tính đạo hàm: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và các hàm số cơ bản (hàm số mũ, hàm số logarit, hàm số lượng giác).
  • Đạo hàm của hàm hợp: Sử dụng quy tắc chuỗi để tính đạo hàm của hàm hợp.

Lời giải chi tiết bài 7.46 trang 42

(Ở đây sẽ là lời giải chi tiết của bài 7.46, bao gồm các bước giải, giải thích rõ ràng, và kết quả cuối cùng. Lời giải sẽ được trình bày một cách logic và dễ hiểu, sử dụng các ký hiệu toán học chính xác.)

Ví dụ minh họa và bài tập tương tự

Để giúp học sinh hiểu rõ hơn về cách giải bài 7.46, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự:

  1. Ví dụ 1: Tìm đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
  2. Ví dụ 2: Tìm cực trị của hàm số f(x) = x2 - 4x + 3.
  3. Bài tập 1: Giải bài 7.47 trang 42 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống.
  4. Bài tập 2: Giải bài 7.48 trang 42 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống.

Lưu ý quan trọng khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, học sinh cần lưu ý một số điểm sau:

  • Kiểm tra kỹ các điều kiện xác định của hàm số.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Kiểm tra lại kết quả sau khi tính toán.
  • Vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Vật lý: Tính vận tốc, gia tốc, và các đại lượng liên quan đến chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên, và lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa các thiết kế và quy trình sản xuất.
  • Thống kê: Phân tích dữ liệu và dự đoán xu hướng.

Tổng kết

Bài 7.46 trang 42 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các ví dụ minh họa trên, các em học sinh sẽ tự tin giải quyết bài tập này và các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11