Bài 2.43 trang 42 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.43 trang 42, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong các dãy số (\({u_n}\)) dưới đây, dãy số nào là cấp số cộng, dãy số nào là cấp số nhân?
Đề bài
Trong các dãy số (\({u_n}\)) dưới đây, dãy số nào là cấp số cộng, dãy số nào là cấp số nhân? Nếu dãy số là cấp số cộng hoặc cấp số nhân, hãy xác định công sai hoặc công bội của nó.
a) \({u_1} = 2,\,\,{u_{n + 1}} = {u_n} + n\)
b) \({u_n} = 6n + 3\)
c) \({u_1} = 1,\,\,{u_{n + 1}} = {u_n}.n\)
d) \({u_n} = {3.5^n}\).
Phương pháp giải - Xem chi tiết
Xét \({u_{n + 1}} - {u_n}\). Nếu ra một hằng số thì đó là cấp số cộng.
Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}}\), nếu ra hằng số thì đó là cấp số nhân.
Nếu dãy số đó không phải là cấp số cộng, cấp số nhân, ta sử dụng công thức truy hồi suy ra \({u_1},\,{u_2},\,{u_3}\) để chứng minh rằng \({u_2} - {u_1} \ne {u_3} - {u_2}\)và \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\).
Lời giải chi tiết
a) Từ hệ thức truy hồi ta có \({u_1} = 2,\,{u_2} = 3,\,{u_3} = 5\). Vì \({u_2} - {u_1} \ne {u_3} - {u_2}\)và \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên dãy số đã cho không phải cấp số cộng cũng không phải cấp số nhân.
b) Xét \({u_{n + 1}} - {u_n} = 6(n + 1) + 3 - (6n + 3) = 6\). Vậy dãy số đã cho là cấp số cộng.
c) Từ hệ thức truy hồi ta có \({u_1} = 1,\,{u_2} = 1,\,{u_3} = 2\). Vì \({u_2} - {u_1} \ne {u_3} - {u_2}\)và \(\frac{{{u_2}}}{{{u_1}}} \ne \frac{{{u_3}}}{{{u_2}}}\) nên dãy số đã cho không phải cấp số cộng cũng không phải cấp số nhân.
d) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{3.5}^{n + 1}}}}{{{{3.5}^n}}} = 5\). Vậy dãy số đã cho là cấp số nhân.
Bài 2.43 trang 42 sách bài tập Toán 11 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải bài toán cụ thể, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các vectơ, các điểm trong không gian và yêu cầu tính toán một giá trị nào đó, chẳng hạn như độ dài vectơ, góc giữa hai vectơ, hoặc chứng minh một đẳng thức vectơ.
Dưới đây là lời giải chi tiết bài 2.43 trang 42 sách bài tập Toán 11 - Kết nối tri thức. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)
Ví dụ lời giải (chỉ mang tính minh họa):
Cho hai vectơ a = (1; 2; 3) và b = (-2; 1; 0). Tính tích vô hướng của hai vectơ a và b.
Giải:
Tích vô hướng của hai vectơ a và b được tính theo công thức:
a.b = (1 * -2) + (2 * 1) + (3 * 0) = -2 + 2 + 0 = 0
Vậy, tích vô hướng của hai vectơ a và b là 0.
Ngoài bài 2.43, sách bài tập Toán 11 - Kết nối tri thức còn có nhiều bài tập tương tự liên quan đến vectơ. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập về vectơ một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Để học tập và ôn luyện kiến thức về vectơ, bạn có thể tham khảo các tài liệu sau:
Bài 2.43 trang 42 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập.