Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải bài 6 trang 67 Sách bài tập Toán 11 - Kết nối tri thức một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập đòi hỏi sự tư duy và vận dụng kiến thức. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Số thập phân vô hạn tuần hoàn \(x = 1,\left( 2 \right) = 1,2222 \ldots \) viết được dưới dạng phân số tối giản là
Đề bài
Số thập phân vô hạn tuần hoàn \(x = 1,\left( 2 \right) = 1,2222 \ldots \) viết được dưới dạng phân số tối giản là
A. \(1\frac{2}{9}\).
B. \(\frac{{11}}{9}\).
C. \(\frac{{10}}{9}\).
D. \(\frac{{22}}{{18}}\).
Phương pháp giải - Xem chi tiết
Ta có cấp số nhân vô hạn \({u_1};{u_1}q;{u_1}{q^2};....\)công bội \(q\)
Nếu \(\left| q \right| < 1 \Rightarrow S = {u_1} + {u_1}q + {u_1}{q^2} + .... = \frac{{{u_1}}}{{1 - q}}\)
Lời giải chi tiết
\(x = 1,\left( 2 \right) = 1,2222 \ldots = 1 + \frac{2}{{10}} + \frac{2}{{100}} + \frac{2}{{1000}} + ....\)
\(\frac{2}{{10}};\frac{2}{{100}};\frac{2}{{1000}};....\)là cấp số nhân công bội \(q = \frac{1}{{10}};{u_1} = \frac{2}{{10}} \Rightarrow \frac{2}{{10}} + \frac{2}{{100}} + \frac{2}{{1000}} + .... = \frac{{\frac{2}{{10}}}}{{1 - \frac{1}{{10}}}} = \frac{2}{9}\)
\( \Rightarrow x = 1 + \frac{2}{9} = \frac{{11}}{9}\)
Chọn B
Bài 6 trang 67 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, phép trừ vectơ, tích của một số với vectơ, và các tính chất của chúng.
Trước khi bắt tay vào giải bài tập, điều quan trọng là phải đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, cần lựa chọn phương pháp giải phù hợp. Đối với bài 6 trang 67, phương pháp giải thường bao gồm:
Để cung cấp lời giải chi tiết, chúng ta cần xem xét từng ý của bài tập. Giả sử bài tập yêu cầu chứng minh một đẳng thức vectơ, ta cần thực hiện các bước sau:
Nếu bài tập yêu cầu tính độ dài của một vectơ, ta có thể sử dụng công thức:
|a| = √(x² + y² + z²)
Trong đó, a = (x, y, z) là vectơ cần tính độ dài.
Giả sử bài tập yêu cầu chứng minh rằng: a + b = b + a (với a và b là hai vectơ bất kỳ).
Lời giải:
Ta có:
a + b = (x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)
b + a = (x2, y2, z2) + (x1, y1, z1) = (x2 + x1, y2 + y1, z2 + z1)
Vì x1 + x2 = x2 + x1, y1 + y2 = y2 + y1, và z1 + z2 = z2 + z1, nên a + b = b + a.
Kiến thức về vectơ trong không gian có ứng dụng rộng rãi trong nhiều lĩnh vực của khoa học và kỹ thuật, như vật lý, cơ học, đồ họa máy tính, và robot học. Việc nắm vững kiến thức này sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả.
Bài 6 trang 67 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ trong không gian. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!