Logo Header
  1. Môn Toán
  2. Giải bài 7.12 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.12 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.12 trang 28 Sách bài tập Toán 11 - Kết nối tri thức

Bài 7.12 trang 28 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.12 trang 28, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Một cấy cột được dựng trên một sàn phẳng. Người ta thả dây dọi và ngắm thấy cột song song với dây dọi

Đề bài

Một cấy cột được dựng trên một sàn phẳng. Người ta thả dây dọi và ngắm thấy cột song song với dây dọi. Hỏi có thể khẳng định rằng cây cột vuông góc với sàn hay không? Vì sao? 

Phương pháp giải - Xem chi tiếtGiải bài 7.12 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Sử dụng tính chất \(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\a//b\end{array} \right. \Rightarrow b \bot \left( \alpha \right)\)

Lời giải chi tiết

 Vì dây dọi song song với cây cột và dây dọi vuông góc với mặt phẳng sàn nên cây cột vuông góc với mặt phẳng sàn.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7.12 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng đề thi toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7.12 trang 28 Sách bài tập Toán 11 - Kết nối tri thức: Tổng quan

Bài 7.12 trang 28 sách bài tập Toán 11 Kết nối tri thức thuộc chương trình học về đạo hàm của hàm số. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số.

Nội dung bài tập 7.12 trang 28

Bài tập 7.12 thường xoay quanh các tình huống thực tế, ví dụ như tính vận tốc của một vật chuyển động, tính gia tốc, hoặc tìm điểm cực trị của một hàm số. Để giải bài tập này, học sinh cần:

  • Xác định đúng hàm số mô tả tình huống.
  • Tính đạo hàm của hàm số.
  • Phân tích đạo hàm để tìm ra các thông tin cần thiết (ví dụ: vận tốc, gia tốc, điểm cực trị).

Lời giải chi tiết bài 7.12 trang 28

Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài tập 7.12. Tuy nhiên, dưới đây là một ví dụ về cách giải một bài tập tương tự:

Ví dụ:

Một vật chuyển động theo phương trình s(t) = t2 + 2t + 1 (trong đó s là quãng đường, t là thời gian). Tính vận tốc của vật tại thời điểm t = 3.

  1. Tính đạo hàm của s(t): v(t) = s'(t) = 2t + 2
  2. Thay t = 3 vào v(t): v(3) = 2(3) + 2 = 8
  3. Kết luận: Vận tốc của vật tại thời điểm t = 3 là 8 đơn vị quãng đường/thời gian.

Các dạng bài tập thường gặp

Ngoài bài tập tính vận tốc, bài 7.12 trang 28 có thể xuất hiện các dạng bài tập sau:

  • Tìm điểm cực trị của hàm số: Yêu cầu tìm các điểm mà tại đó hàm số đạt giá trị lớn nhất hoặc nhỏ nhất.
  • Khảo sát hàm số: Yêu cầu xác định các khoảng đồng biến, nghịch biến, điểm cực trị, và điểm uốn của hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán tối ưu: Ví dụ: tìm kích thước của một hình chữ nhật có diện tích lớn nhất với chu vi cho trước.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.
  • Hiểu rõ ý nghĩa vật lý của đạo hàm để có thể áp dụng vào giải quyết các bài toán thực tế.

Tài liệu tham khảo hữu ích

Để học tốt về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 - Kết nối tri thức
  • Sách bài tập Toán 11 - Kết nối tri thức
  • Các trang web học Toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 7.12 trang 28 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập.

Tài liệu, đề thi và đáp án Toán 11