Bài 3.23 trang 52 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.23 trang 52, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Bạn Chi vào website của một cửa hàng bán điện thoại tìm hiểu và đã thống kê số lượng một loại điện thoại theo giá bán cho kết quả như sau:
Đề bài
Bạn Chi vào website của một cửa hàng bán điện thoại tìm hiểu và đã thống kê số lượng một loại điện thoại theo giá bán cho kết quả như sau:
a) Đọc và giải thích mẫu số liệu ghép nhóm này.
b) 50% loại điện thoại trên có giá dưới bao nhiêu?
Phương pháp giải - Xem chi tiết
Giải thích theo bảng.
Tìm trung vị của mẫu số liệu. Ta có bảng số liệu ghép nhóm:
Để tính trung vị \({M_e}\) của mẫu số liệu ghép nhóm ta làm như sau:
Bước 1: Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ j: \(\left[ {{a_j};{a_{j + 1}}} \right)\)
Bước 2: Trung vị là: \({M_e} = {a_j} + \frac{{\frac{n}{2} - \left( {{m_1} + ... + {m_{j - 1}}} \right)}}{{{m_j}}}\left( {{a_{j + 1}} - {a_j}} \right)\)
Trong đó, n là cỡ mẫu. Với \(j = 1\) ta quy ước \({m_1} + ... + {m_{j - 1}} = 0\). Trung vị chính là tứ phân vị thứ hai \({Q_2}.\) Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu thành 2 phần, mỗi phần chứa 50% giá trị.
Lời giải chi tiết
a) Có 20 điện thoại dưới 2 triệu đồng, 5 điện thoại từ 2 đến 4 triệu đồng, 11 điện thoại từ 4 đến 7 triệu đồng, 18 điện thoại từ 7 đến 13 triệu đồng, 21 điện thoại từ 13 đến 20 triệu đồng.
b) \(\frac{n}{2} = \frac{{20 + 5 + 11 + 18 + 21}}{2} = \frac{{75}}{2} = 37,5\). Khoảng chứa trung vị là [7;13).
\({M_e} = 7 + \frac{{37,5 - \left( {20 + 5 + 11} \right)}}{{18}}\left( {13 - 7} \right) = 7,5.\)
Vậy có 50% điện thoại dưới 7 triệu rưỡi.
Bài 3.23 thuộc chương trình học về đường thẳng và mặt phẳng trong không gian, một phần kiến thức nền tảng của môn Toán 11. Để giải quyết bài toán này, học sinh cần nắm vững các khái niệm cơ bản như:
Phương pháp giải bài 3.23 thường bao gồm các bước sau:
(Nội dung lời giải chi tiết bài 3.23 sẽ được trình bày tại đây. Bao gồm các bước giải, giải thích rõ ràng, và sử dụng hình vẽ minh họa nếu cần thiết. Ví dụ:)
Đề bài: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z = 5. Tìm giao điểm của d và (P).
Giải:
Thay phương trình tham số của d vào phương trình (P), ta được:
2(1 + t) - (2 - t) + (3 + 2t) = 5
2 + 2t - 2 + t + 3 + 2t = 5
5t + 3 = 5
5t = 2
t = 2/5
Thay t = 2/5 vào phương trình tham số của d, ta được:
x = 1 + 2/5 = 7/5
y = 2 - 2/5 = 8/5
z = 3 + 2(2/5) = 3 + 4/5 = 19/5
Vậy giao điểm của d và (P) là I(7/5, 8/5, 19/5).
Ngoài bài 3.23, còn rất nhiều bài tập tương tự liên quan đến quan hệ giữa đường thẳng và mặt phẳng. Một số dạng bài tập thường gặp bao gồm:
Để giải quyết các bài tập này, học sinh cần nắm vững các công thức và phương pháp đã học, đồng thời luyện tập thường xuyên để nâng cao kỹ năng giải toán.
Để củng cố kiến thức và rèn luyện kỹ năng giải toán, học sinh có thể tham khảo thêm các tài liệu sau:
Giaitoan.edu.vn hy vọng rằng lời giải chi tiết bài 3.23 trang 52 sách bài tập Toán 11 - Kết nối tri thức sẽ giúp các em học sinh học tập hiệu quả và đạt kết quả tốt trong môn Toán.