Logo Header
  1. Môn Toán
  2. Giải bài 2.7 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 2.7 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 2.7 trang 34 Sách bài tập Toán 11 - Kết nối tri thức

Chào mừng các em học sinh đến với bài giải bài 2.7 trang 34 sách bài tập Toán 11 - Kết nối tri thức tại giaitoan.edu.vn. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất, hỗ trợ các em trong quá trình chinh phục môn Toán.

Nếu tỉ lệ lạm phát là 3,5% mỗi năm và giá trung bình của một hộ chung cư mới tại thời điểm hiện tại là 2,5 tỉ đồng thì giá trị trung bình của một căn hộ chung cư sau n năm nữa được cho bởi công thức ({A_n} = 2,5.{left( {1,035}

Đề bài

Nếu tỉ lệ lạm phát là 3,5% mỗi năm và giá trung bình của một hộ chung cư mới tại thời điểm hiện tại là 2,5 tỉ đồng thì giá trị trung bình của một căn hộ chung cư sau n năm nữa được cho bởi công thức \({A_n} = 2,5.{\left( {1,035} \right)^n}\) (tỉ đồng). Tìm giá trị trung bình của một căn hộ chung cư mới sau 5 năm nữa.

Phương pháp giải - Xem chi tiếtGiải bài 2.7 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Ta kí hiệu \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\), do đó dãy số \(\left( {{u_n}} \right)\) được viết dưới dạng khai triển \({u_1},{u_2},...,{u_n},...\) Số \({u_1}\) gọi là số hạng đầu, số \({u_n}\) là số hạng thứ n và gọi là số hạng tổng quát của dãy số.

Lời giải chi tiết

Giá trung bình của một căn hộ chung cư mới sau 5 năm là:

\({A_5} = 2,5.{\left( {1,035} \right)^5} = 2,9692\) (tỉ đồng)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 2.7 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 2.7 trang 34 Sách bài tập Toán 11 - Kết nối tri thức: Tổng quan

Bài 2.7 trang 34 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của parabol để giải quyết các bài toán thực tế.

Nội dung bài tập 2.7

Bài tập 2.7 thường bao gồm các dạng câu hỏi sau:

  • Xác định các yếu tố của parabol (a, b, c).
  • Tìm tọa độ đỉnh của parabol.
  • Tìm phương trình trục đối xứng của parabol.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số bậc hai trong thực tế.

Phương pháp giải bài tập 2.7

Để giải bài tập 2.7 trang 34 sách bài tập Toán 11 - Kết nối tri thức một cách hiệu quả, các em cần nắm vững các kiến thức sau:

  1. Công thức tính tọa độ đỉnh của parabol: xđỉnh = -b/(2a), yđỉnh = (4ac - b2)/(4a)
  2. Phương trình trục đối xứng: x = -b/(2a)
  3. Điều kiện để hàm số đồng biến, nghịch biến:
    • Nếu a > 0: Hàm số nghịch biến trên (-∞; -b/(2a)) và đồng biến trên (-b/(2a); +∞)
    • Nếu a < 0: Hàm số đồng biến trên (-∞; -b/(2a)) và nghịch biến trên (-b/(2a); +∞)

Ví dụ minh họa giải bài 2.7 trang 34

Bài toán: Tìm tọa độ đỉnh và phương trình trục đối xứng của parabol y = x2 - 4x + 3.

Giải:

Hàm số y = x2 - 4x + 3 có a = 1, b = -4, c = 3.

Tọa độ đỉnh của parabol là:

xđỉnh = -(-4)/(2*1) = 2

yđỉnh = (4*1*3 - (-4)2)/(4*1) = (12 - 16)/4 = -1

Vậy, tọa độ đỉnh của parabol là (2; -1).

Phương trình trục đối xứng của parabol là: x = 2.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập, các em có thể luyện tập thêm với các bài tập tương tự trong sách bài tập và các đề thi thử Toán 11.

Lời khuyên

Trong quá trình giải bài tập, các em nên:

  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
  • Vận dụng linh hoạt các công thức và kiến thức đã học.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Tham khảo các nguồn tài liệu học tập khác để mở rộng kiến thức.

Kết luận

Bài 2.7 trang 34 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em hiểu sâu hơn về hàm số bậc hai và ứng dụng của nó. Hy vọng với bài giải chi tiết và phương pháp giải hiệu quả mà giaitoan.edu.vn cung cấp, các em sẽ tự tin chinh phục bài tập này và đạt kết quả tốt trong môn Toán.

Công thứcMô tả
xđỉnh = -b/(2a)Hoành độ đỉnh của parabol
yđỉnh = (4ac - b2)/(4a)Tung độ đỉnh của parabol
x = -b/(2a)Phương trình trục đối xứng

Tài liệu, đề thi và đáp án Toán 11