Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 9.4 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Tính đạo hàm của hàm số
Đề bài
Tính đạo hàm của hàm số
a) \(y = a{x^2}\) (\(a\) là hằng số) tại điểm \({x_0}\) bất kì.
b) \(y = \frac{1}{{x - 1}}\) tại điểm \({x_0}\) bất kì, \({x_0} \ne 1\).
Phương pháp giải - Xem chi tiết
Để tính đạo hàm của hàm số \(y = f(x)\) tại điểm \({x_0} \in (a;b)\), ta thực hiện theo các bước sau:
1. Tính \(f(x) - f\left( {{x_0}} \right)\).
2. Lập và rút gọn tỉ số \(\frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) với \(x \in (a;b),x \ne {x_0}\).
3. Tìm giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết
a) \(y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ax_{}^2 - ax_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} a\left( {x + {x_0}} \right) = 2a{x_0}\) b) \(y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{1}{{x - 1}} - \frac{1}{{{x_0} - 1}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left[ { - \frac{1}{{\left( {x - 1} \right)\left( {{x_0} - 1} \right)}}} \right] = - \frac{1}{{{{\left( {{x_0} - 1} \right)}^2}}},{x_0} \ne 1\)
Bài 9.4 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về vectơ trong không gian để giải quyết các bài toán hình học. Bài tập này yêu cầu học sinh phải hiểu rõ các khái niệm như vectơ, phép cộng, trừ vectơ, tích của một số với vectơ, và đặc biệt là ứng dụng của vectơ trong việc chứng minh các tính chất hình học.
Bài tập 9.4 thường bao gồm các dạng bài sau:
Để giải bài 9.4 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống, chúng ta cần thực hiện các bước sau:
Dưới đây là lời giải chi tiết cho từng phần của bài tập 9.4 (giả sử bài tập có nhiều phần):
(Nội dung lời giải phần a)
(Nội dung lời giải phần b)
(Nội dung lời giải phần c)
Để giải quyết bài tập 9.4 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, bạn có thể tham khảo các bài tập tương tự sau:
Để học tốt môn Toán 11, bạn nên:
Hy vọng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 9.4 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống. Chúc bạn học tập tốt!