Bài 7.16 trang 31 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.16 trang 31, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hình hộp \(ABCD \cdot A'B'C'D'\) có đáy \(ABCD\) là hình vuông cạnh a và \(AA' = a\sqrt 2 \)
Đề bài
Cho hình hộp \(ABCD \cdot A'B'C'D'\) có đáy \(ABCD\) là hình vuông cạnh a và \(AA' = a\sqrt 2 \), hình chiếu vuông góc của \(A\) trên mặt phẳng \(\left( {A'B'C'D'} \right)\) trùng với trung điểm của \(B'D'\). Tính góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'D'} \right)\).
Phương pháp giải - Xem chi tiết
Gọi \(O\) là giao điểm của \(A'C'\) và \(B'D'\)
Xác định hình chiếu vuông góc của \(AA'\) trên mặt phẳng \(\left( {A'B'CD'} \right)\)
Tính góc giữa đường thẳng \(AA'\) và hình chiếu của nó rồi kết luận
Áp dụng tỉ số lượng giác cho tam giác vuông để tính góc
Lời giải chi tiết
Gọi \(O\) là giao điểm của \(A'C'\) và \(B'D'\).
Ta có: \(A'O\) là hình chiếu vuông góc của \(AA'\) trên mặt phẳng \(\left( {A'B'CD'} \right)\), góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'D'} \right)\) bằng góc giữa \(AA'\) và \(A'O\).
Mà \(\left( {AA',A'O} \right) = \widehat {AA'O}\), ta lại có \(A'O = \frac{{a\sqrt 2 }}{2}\).
Do đó \({\rm{cos}}\widehat {AA'O} = \frac{{OA'}}{{AA'}} = \frac{1}{2}\),
Suy ra \(\widehat {AA'O} = {60^ \circ }\).
Vậy góc giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {A'B'C'D'} \right)\) bằng \({60^ \circ }\).
Bài 7.16 trang 31 sách bài tập Toán 11 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra hướng giải quyết phù hợp. Thông thường, các bài toán về vectơ trong không gian có thể được giải bằng các phương pháp sau:
(Giả sử đề bài bài 7.16 là: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).)
Lời giải:
Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD.
Vì SA vuông góc với mặt phẳng (ABCD) nên SA vuông góc với BO.
Xét tam giác SAB vuông tại A, ta có: SB = √(SA2 + AB2) = √(a2 + a2) = a√2
Xét tam giác SBO, ta có: BO = (1/2)BD = (1/2)a√2 = (a√2)/2
Gọi φ là góc giữa đường thẳng SB và mặt phẳng (ABCD). Ta có: sin φ = SA/SB = a/(a√2) = 1/√2 = √2/2
Suy ra: φ = 45o
Vậy, góc giữa đường thẳng SB và mặt phẳng (ABCD) là 45o.
Để nắm vững kiến thức về vectơ và các ứng dụng của vectơ trong hình học, các em học sinh nên luyện tập thêm các bài tập tương tự. Giaitoan.edu.vn cung cấp một kho bài tập phong phú, đa dạng, giúp các em củng cố kiến thức và nâng cao kỹ năng giải toán.
Bài 7.16 trang 31 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng, giúp các em học sinh rèn luyện kỹ năng giải toán về vectơ trong không gian. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, xác định bởi điểm gốc và điểm cuối. |
Tích vô hướng | Một phép toán giữa hai vectơ, cho kết quả là một số thực. |
Góc giữa hai vectơ | Góc tạo bởi hai vectơ khi chúng được đặt chung gốc. |