Bài 4.60 trang 73 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.60 trang 73 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi O là một điểm nằm trong tam giác SAD.
Đề bài
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB//CD). Gọi O là một điểm nằm trong tam giác SAD.
a) Xác định giao điểm của đường thẳng AO và mặt phẳng (SCD).
b) Xác định giao tuyến của hai mặt phẳng (SBO) và (SAC).
c) Xác định giao điểm của đường thẳng BO và mặt phẳng (SAC).
Phương pháp giải - Xem chi tiết
Để tìm giao tuyến của hai mặt phẳng, ta đi tìm hai điểm chung thuộc cả hai mặt phẳng đó rồi nối hai điểm chung đó lại ta được giao tuyến cần tìm.
Lời giải chi tiết
a) Trong mặt phẳng (SAD), gọi E là giao điểm của AO và SD thì E là giao điểm của AO và mặt phẳng (SCD).
b) Trong mặt phẳng (SAD), gọi F là giao điểm của SO và AD. Trong hình thang ABCD, đường thẳng AC cắt BF tại G. Khi đó, SG là giao tuyến của hai mặt phẳng (SBO) và (SAC).
c) Trong mặt phẳng (SBO), gọi H là giao điểm của BO và SG thì H là giao điểm của đường thẳng BO và mặt phẳng (SAC).
Bài 4.60 trang 73 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản sau:
Trước khi đi vào giải bài tập, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các điểm, vectơ hoặc các mối quan hệ giữa chúng. Dựa vào đó, chúng ta sẽ lựa chọn phương pháp giải phù hợp.
(Nội dung lời giải chi tiết bài 4.60 sẽ được trình bày tại đây. Lời giải cần bao gồm các bước giải rõ ràng, sử dụng các công thức và định lý liên quan, và giải thích chi tiết từng bước để học sinh dễ hiểu. Ví dụ:)
Ví dụ: Giả sử bài toán yêu cầu tính độ dài của vectơ AB. Ta có thể sử dụng công thức tính độ dài của vectơ: |AB| = √( (xB - xA)² + (yB - yA)² + (zB - zA)² ). Thay các tọa độ của điểm A và B vào công thức, ta sẽ tính được độ dài của vectơ AB.
Ngoài bài 4.60, còn rất nhiều bài tập tương tự về vectơ trong không gian. Để giải các bài tập này, học sinh có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải toán, học sinh nên luyện tập thêm các bài tập về vectơ trong không gian. Giaitoan.edu.vn cung cấp một kho bài tập phong phú, đa dạng với các mức độ khó khác nhau, giúp các em học sinh tự tin hơn trong quá trình học tập.
Bài 4.60 trang 73 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em học sinh sẽ nắm vững kiến thức và giải quyết bài tập một cách hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!