Logo Header
  1. Môn Toán
  2. Giải bài 7.53 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.53 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.53 trang 43 Sách bài tập Toán 11 - Kết nối tri thức

Bài 7.53 trang 43 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Cho hình chóp tứ giác đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a\)

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a\), cạnh bên \(SA = \frac{{a\sqrt 5 }}{2}\). Gọi \(SM,SN\) lần lượt là đường cao của tam giác \(SAD\) và tam giác \(SBC\).

a) Chứng minh rằng \(\left( {SMN} \right) \bot \left( {ABCD} \right)\).

b) Tính số đo của góc nhị diện \([S,AD,B]\).

Xác định

c) Tính theo a thể tích khối chóp \(S.ABCD\).

Phương pháp giải - Xem chi tiếtGiải bài 7.53 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

a) Chứng minh rằng \(\left( {SMN} \right) \bot \left( {ABCD} \right)\).

Chứng minh mặt phẳng \(\left( {ABCD} \right)\) chứa \(BC \bot \) \(\left( {SMN} \right).\)

b) Tính số đo của góc nhị diện \([S,AD,B]\).

  • Xác định được \(\left[ {S,AD,B} \right] = \widehat {SMO}\)
  • Tính \(\widehat {SMO}\)

c) Tính theo a thể tích khối chóp \(S.ABCD\).

  • Gọi \(O = AC \cap BD\)
  • Tính chiều cao \(SO,{S_{ABCD}}\)
  • Tính thể tích khối chóp \(S.ABCD = \frac{1}{3}SO.{S_{ABCD}}\).

Lời giải chi tiết

Giải bài 7.53 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 2

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Ta có: \(AD \bot SM,AD//BC\) nên \(BC \bot SM\), mà \(BC \bot SN\), suy ra \(BC \bot \left( {SMN} \right).\)

Do đó \(\left( {SMN} \right) \bot \left( {ABCD} \right)\).

b) Vì \(MN\) đi qua \(O\) và \(OM \bot AD,SM \bot AD\) nên \(\left[ {S,AD,B} \right] = \widehat {SMO}\), ta tính được\(SM = SN = MN = a\). Do đó tam giác \(SMN\) đều, suy ra \(\widehat {SMN} = {60^ \circ }\). 

Vậy \(\left[ {S,AD,B} \right] = {60^ \circ }\).

c) Ta có: \(SO = \frac{{a\sqrt 3 }}{2},{S_{ABCD}} = {a^2}\), suy ra \({V_{S.ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{{{a^3}\sqrt 3 }}{6}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7.53 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán math. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7.53 trang 43 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 7.53 trang 43 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài toán ứng dụng thực tế, đòi hỏi học sinh phải hiểu rõ về đạo hàm và cách sử dụng đạo hàm để giải quyết các vấn đề liên quan đến tốc độ thay đổi của một đại lượng.

Phân tích đề bài

Trước khi đi vào giải bài, chúng ta cần phân tích kỹ đề bài để xác định rõ các yếu tố quan trọng: đại lượng cần tìm, các điều kiện cho trước và mối quan hệ giữa các đại lượng đó. Việc phân tích đề bài một cách cẩn thận sẽ giúp chúng ta xây dựng phương án giải quyết bài toán một cách hiệu quả.

Phương pháp giải

Để giải bài 7.53, chúng ta sẽ sử dụng phương pháp đạo hàm để tìm ra mối quan hệ giữa các đại lượng và từ đó giải quyết bài toán. Cụ thể, chúng ta sẽ thực hiện các bước sau:

  1. Xác định hàm số mô tả mối quan hệ giữa các đại lượng.
  2. Tính đạo hàm của hàm số.
  3. Sử dụng đạo hàm để tìm ra giá trị cần tìm.

Lời giải chi tiết

Dưới đây là lời giải chi tiết cho bài 7.53 trang 43 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống:

(Giải bài toán cụ thể ở đây - ví dụ về một bài toán liên quan đến vận tốc, gia tốc, hoặc tối ưu hóa một hàm số. Cần có các bước giải chi tiết, kèm theo giải thích rõ ràng.)

Ví dụ minh họa

Để giúp học sinh hiểu rõ hơn về phương pháp giải, chúng ta sẽ xem xét một ví dụ minh họa:

(Ví dụ minh họa với một bài toán tương tự, giải thích chi tiết từng bước.)

Lưu ý quan trọng

  • Khi giải bài toán ứng dụng, cần chú ý đến đơn vị của các đại lượng.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Mở rộng kiến thức

Ngoài bài 7.53, còn rất nhiều bài tập ứng dụng khác trong chương trình Toán 11. Để nâng cao kiến thức và kỹ năng, học sinh nên tự tìm hiểu và giải thêm các bài tập tương tự. Việc làm này sẽ giúp học sinh hiểu sâu hơn về đạo hàm và ứng dụng của nó trong thực tế.

Tổng kết

Bài 7.53 trang 43 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng giải quyết các bài toán ứng dụng thực tế. Hy vọng với lời giải chi tiết và các ví dụ minh họa, học sinh sẽ nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.

Giaitoan.edu.vn luôn đồng hành cùng học sinh trên con đường chinh phục môn Toán. Hãy truy cập website của chúng tôi để tìm hiểu thêm về các bài giải khác và các tài liệu học tập hữu ích.

Tài liệu, đề thi và đáp án Toán 11