Bài 9.6 trang 57 sách bài tập Toán 11 thuộc chương trình học Toán 11 Kết nối tri thức với cuộc sống. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = - 3{x^2}\)
Đề bài
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = - 3{x^2}\), biết tiếp tuyến đó song song với đường thẳng có phương trình \(y = 6x + 5\).
Phương pháp giải - Xem chi tiết
Áp dụng ý nghĩa hình học của đạo hàm
Tính đạo hàm của hàm số \(y = - 3{x^2}\)
Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến với parabol \(y = - 3{x^2}\)
Vì tiếp tuyến song song với đường thẳng \(y = 6x + 5\) nên hệ số góc của tiếp tuyến bằng \(k = 6.\)
Ta suy ra\(y'({x_0}) = 6 \Rightarrow {x_0};{y_0} = f\left( {{x_0}} \right)\)
Từ đó suy ra phương trình tiếp tuyến.
Lời giải chi tiết
Ta có \(y = - 3{x^2} \Rightarrow y' = - 6x\)
Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến với parabol \(y = - 3{x^2}\)
Vì tiếp tuyến song song với đường thẳng\(y = 6x + 5\) nên \(y'({x_0}) = 6 \Leftrightarrow - 6{x_0} = 6 \Rightarrow {x_0} = - 1\)
Phương trình tiếp tuyến là \(y = 6\left( {x + 1} \right) - 3\) \( \Rightarrow y = 6x + 3\) thoản mãn
Bài 9.6 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của chúng trong giải quyết các bài toán hình học. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết cơ bản:
Để giải bài 9.6 trang 57 sách bài tập Toán 11 - Kết nối tri thức, chúng ta cần đọc kỹ đề bài, xác định các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần tìm ra mối liên hệ giữa các yếu tố này và lựa chọn phương pháp giải phù hợp.
(Giả sử đề bài là: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng: 2MA2 + 2MB2 = AB2 + AC2)
Lời giải:
Để nắm vững kiến thức và kỹ năng giải bài tập về vectơ, bạn nên luyện tập thêm các bài tập tương tự. Dưới đây là một số gợi ý:
Khi giải bài tập về vectơ, bạn cần lưu ý một số điều sau:
Hy vọng với hướng dẫn chi tiết này, bạn sẽ giải thành công bài 9.6 trang 57 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống. Chúc bạn học tốt!