Bài 6.24 trang 14 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.24, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Tìm tập xác định của các hàm số sau:
Đề bài
Tìm tập xác định của các hàm số sau:
a) \(y = {\rm{lo}}{{\rm{g}}_3}\left( {x + 1} \right)\)
b) \(y = {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left| {x - 1} \right|\)
Phương pháp giải - Xem chi tiết
Hàm số lôgarit \(y = {\rm{lo}}{{\rm{g}}_a}u\left( x \right)\) xác định khi và chỉ khi \(a > 0;a \ne 1;u\left( x \right) > 0\)
Từ đó suy ra tập xác định của hàm số \(y = {\rm{lo}}{{\rm{g}}_a}u\left( x \right)\)
Lời giải chi tiết
a) Hàm số \(y = {\rm{lo}}{{\rm{g}}_3}\left( {x + 1} \right)\) xác định \( \Leftrightarrow x + 1 > 0 \Leftrightarrow x > - 1\)
Tập xác định của hàm số là \(\left( { - 1; + \infty } \right)\)
b) Ta có \(\left| {x - 1} \right| > 0,{\rm{\;}}\forall x \ne 1\)
Hàm số \(y = {\rm{lo}}{{\rm{g}}_{\frac{1}{2}}}\left| {x - 1} \right|\) xác định \( \Leftrightarrow \left| {x - 1} \right| > 0 \Leftrightarrow x \ne - 1\)
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\)
Bài 6.24 sách bài tập Toán 11 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi đi vào giải chi tiết, chúng ta cần phân tích đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các điểm trong không gian và yêu cầu tính toán các đại lượng liên quan đến vectơ, chẳng hạn như:
Dưới đây là lời giải chi tiết bài 6.24 trang 14 sách bài tập Toán 11 - Kết nối tri thức. (Lưu ý: Vì đề bài cụ thể không được cung cấp, phần này sẽ trình bày một ví dụ minh họa về cách giải một bài toán vectơ tương tự.)
Cho hình hộp ABCD.A'B'C'D'. Biết AB = a, AD = b, AA' = c. Tính độ dài của vectơ AC'.
Lời giải:
Ngoài bài 6.24, sách bài tập Toán 11 - Kết nối tri thức còn nhiều bài tập tương tự về vectơ. Để giải tốt các bài tập này, bạn cần:
Để giải nhanh các bài tập vectơ, bạn có thể sử dụng một số mẹo sau:
Bài 6.24 trang 14 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin giải quyết bài toán này và các bài tập tương tự một cách hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!