Bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Xét tính chẵn lẻ của các hàm số sau:
Đề bài
Xét tính chẵn lẻ của các hàm số sau:
a) \(y = \frac{{\cos 2x}}{{{x^3}}}\);
b) \(y = x - \sin 3x\);
c) \(y = \sqrt {1 + \cos x} \);
d) \(y = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\).
Phương pháp giải - Xem chi tiết
Bước 1: Tìm tập xác định của hàm số, xét xem với mọi \(x \in D\), \( - x \in D\) hay không.
Bước 2: Xét \(f( - x)\)
+) Nếu \(f( - x) = f(x)\) thì đó là hàm số chẵn.
+) Nếu \(f( - x) = - f(x)\) thì đó là hàm số lẻ.
+) Nếu không rơi vào 2 trường hợp trên thì đó là hàm số không chẵn không lẻ.
Lời giải chi tiết
a) Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \).
Nếu kí hiệu \(f(x) = \frac{{\cos 2x}}{{{x^3}}}\) thì với mọi \(x \in D\), ta có:
\( - x \in D\) và \(f( - x) = \frac{{\cos 2( - x)}}{{{{( - x)}^3}}} = - \frac{{\cos 2x}}{{{x^3}}} = f(x).\)
Vậy hàm số đã cho là hàm số lẻ.
b) Tập xác định: \(D = \mathbb{R}\)
Nếu kí hiệu \(f(x) = x - \sin 3x\) thì với mọi \(x \in D\), ta có:
\( - x \in D\) và \(f(x) = - x - \sin 3( - x) = - (x - \sin 3x) = f(x)\).
Vậy hàm số đã cho là hàm số lẻ.
c) Tập xác định: \(D = \mathbb{R}\)
Nếu kí hiệu \(f(x) = \sqrt {1 + \cos x} \) thì với mọi\(x \in D\), ta có:
\( - x \in D\) và \(f( - x) = \sqrt {1 + \cos ( - x)} = \sqrt {1 + \cos x} = f(x)\).
Vậy hàm số đã cho là hàm số chẵn.
d) Tập xác định: \(D = \mathbb{R}\)
Nếu kí hiệu \(f(x) = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right)\) thì với mọi \(x \in D\), ta có:
\( - x \in D\) và \(f( - x) = 1 + \cos ( - x)\sin \left( {\frac{{3\pi }}{2} - 2( - x)} \right) = 1 + \cos x\sin \left( {\frac{{3\pi }}{2} - 2x} \right) = f(x)\)
Vậy hàm số đã cho là hàm số chẵn.
Bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học Toán 11, tập trung vào việc củng cố kiến thức về vectơ và ứng dụng của chúng trong giải quyết các bài toán hình học. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:
Dưới đây là hướng dẫn chi tiết cách giải bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức:
Trước khi bắt đầu giải bài, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp học sinh lựa chọn phương pháp giải phù hợp và tránh sai sót trong quá trình giải.
Giả sử đề bài yêu cầu tính độ dài của vectơ AB, với A(x1, y1) và B(x2, y2). Ta có công thức tính độ dài của vectơ AB như sau:
|AB| = √((x2 - x1)² + (y2 - y1)²)
Học sinh áp dụng công thức này để tính độ dài của vectơ AB trong bài toán cụ thể.
Giaitoan.edu.vn hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải quyết bài 1.18 trang 18 Sách bài tập Toán 11 - Kết nối tri thức một cách hiệu quả. Chúc các em học tốt!
Ngoài ra, các em có thể tham khảo thêm các bài giải khác trên Giaitoan.edu.vn để nâng cao kiến thức và kỹ năng giải toán.
Vectơ | Công thức |
---|---|
Độ dài vectơ | |a| = √(x² + y²) |
Tích vô hướng | a.b = x1x2 + y1y2 |