Logo Header
  1. Môn Toán
  2. Giải bài 4.3 trang 55 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 4.3 trang 55 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 4.3 trang 55 Sách bài tập Toán 11 - Kết nối tri thức

Bài 4.3 trang 55 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.3 trang 55, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AC.

Đề bài

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, AC. Gọi P là điểm thuộc cạnh AD sao cho AP = 2 DP. Xác định giao tuyến của hai mặt phẳng (MNP) và (BCD).

Phương pháp giải - Xem chi tiếtGiải bài 4.3 trang 55 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Để xác định giao tuyến của hai mặt phẳng, ta tìm hai điểm chung (phân biệt) của hai mặt phẳng đó.

Lời giải chi tiết

Giải bài 4.3 trang 55 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 2

Trên mặt phẳng (ABD): gọi giao điểm của MP và BD là E. Vậy E là điểm chung thứ nhất của hai mặt phẳng (MNP) và (BCD)

Trên mặt phẳng (ACD): gọi giao điểm của NP và CD là F. Vậy F là điểm chung thứ hai của hai mặt phẳng (MNP) và (BCD).

Vậy giao tuyến của hai mặt phẳng (MNP) và (BCD) là đường thẳng EF.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 4.3 trang 55 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 4.3 trang 55 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 4.3 trang 55 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng, ứng dụng của tích vô hướng trong việc xác định góc giữa hai vectơ, tính độ dài vectơ.
  • Hệ tọa độ trong không gian: Biểu diễn vectơ bằng tọa độ, các phép toán vectơ trong hệ tọa độ.

Nội dung bài tập 4.3 trang 55

Bài tập 4.3 thường yêu cầu học sinh thực hiện các nhiệm vụ sau:

  1. Xác định các vectơ trong hình học.
  2. Thực hiện các phép toán vectơ (cộng, trừ, nhân với một số thực).
  3. Tính tích vô hướng của hai vectơ.
  4. Sử dụng tích vô hướng để tính góc giữa hai vectơ.
  5. Giải các bài toán liên quan đến ứng dụng của vectơ trong hình học (ví dụ: chứng minh ba điểm thẳng hàng, hai đường thẳng vuông góc).

Lời giải chi tiết bài 4.3 trang 55

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào phân tích một ví dụ cụ thể. Giả sử bài tập yêu cầu:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).

Lời giải:

  1. Vẽ hình: Vẽ hình chóp S.ABCD và các đường thẳng, mặt phẳng liên quan.
  2. Xác định góc cần tính: Góc giữa đường thẳng SB và mặt phẳng (ABCD) chính là góc giữa SB và hình chiếu của SB lên mặt phẳng (ABCD), tức là góc giữa SB và AB.
  3. Tính độ dài các cạnh: Sử dụng định lý Pitago để tính độ dài AB, SA, SB.
  4. Tính góc: Sử dụng hàm sin hoặc cosin để tính góc giữa SB và AB.

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững các định nghĩa, tính chất và công thức liên quan đến vectơ.
  • Vẽ hình minh họa để hình dung rõ bài toán.
  • Sử dụng các phép biến đổi vectơ để đơn giản hóa bài toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Ứng dụng của vectơ trong thực tế

Vectơ không chỉ là một khái niệm trừu tượng trong toán học mà còn có nhiều ứng dụng thực tế trong các lĩnh vực khác nhau, như:

  • Vật lý: Vectơ được sử dụng để biểu diễn các đại lượng vật lý có cả độ lớn và hướng, như vận tốc, gia tốc, lực.
  • Tin học: Vectơ được sử dụng trong đồ họa máy tính, xử lý ảnh, và các ứng dụng khác.
  • Kỹ thuật: Vectơ được sử dụng trong xây dựng, cơ khí, và các ngành kỹ thuật khác.

Tổng kết

Bài 4.3 trang 55 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 11