Bài 2.29 trang 40 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.29 trang 40, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Các cạnh của hình vuông ban đầu có chiều dài 16cm. Một hình vuông mới được hình thành bằng cách nối các điểm giữa của các cạnh của hình vuông ban đầu và hai trong số các hình tam giác kết quả được tô màu (hình vẽ dưới).
Đề bài
Các cạnh của hình vuông ban đầu có chiều dài 16cm. Một hình vuông mới được hình thành bằng cách nối các điểm giữa của các cạnh của hình vuông ban đầu và hai trong số các hình tam giác kết quả được tô màu (hình vẽ dưới). Nếu quá trình này được lặp lại năm lần nữa, hãy xác định tổng diện tích của vùng được tô màu.
Phương pháp giải - Xem chi tiết
+ Cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu là \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức \({u_n} = {u_1}.{q^{n - 1}}\) với \(n \ge 2\)
+ Cho cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q \ne 1\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Khi đó, \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\)
Lời giải chi tiết
Gọi \({u_n}\) là diện tích hai tam giác được tô màu ở lần thực hiện thứ n. Gọi a là độ dài cạnh của hình vuông ban đầu.
Ở lần 1 thì độ dài cạnh tam giác vuông cân là \(\frac{a}{2}\) nên \({u_1} = 2.\frac{1}{2}.\frac{a}{2}.\frac{a}{2} = \frac{{{a^2}}}{{{2^2}}}\) và độ dài của cạnh hình vuông sau đó là \(\frac{{a\sqrt 2 }}{2}\)
Ở lần 2 thì độ dài cạnh tam giác vuông cân là \(\frac{a}{2}.\frac{{\sqrt 2 }}{2}\) nên \({u_2} = \frac{{{a^2}}}{{{2^3}}}\)
Ở lần 3 thì độ dài cạnh tam giác vuông cân là \(\frac{a}{2}.\frac{{\sqrt 2 }}{2}.\frac{{\sqrt 2 }}{2}\) nên \({u_3} = \frac{{{a^2}}}{{{2^4}}}\)’
Như vậy, dãy số (\({u_n}\)) là cấp số nhân với \({u_1} = \frac{{{a^2}}}{4}\) và công bội \(q = \frac{1}{2}\)
Vậy tổng diện tích sau năm lần thực hiện là \({S_5} = {u_1} = \frac{{1 - {q^5}}}{{1 - q}} = 124\left( {c{m^2}} \right)\)
Bài 2.29 trang 40 sách bài tập Toán 11 Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra phương pháp giải phù hợp. Thông thường, bài toán này sẽ yêu cầu chúng ta:
(Ở đây sẽ là lời giải chi tiết của bài 2.29 trang 40, bao gồm các bước giải, giải thích rõ ràng và hình vẽ minh họa nếu cần thiết. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm vững phương pháp giải.)
Để giúp các em hiểu rõ hơn về cách giải bài toán này, chúng ta sẽ xem xét một ví dụ minh họa:
Ví dụ: Cho tam giác ABC có A(1;2), B(3;4), C(5;0). Tính độ dài đường cao hạ từ A xuống cạnh BC.
Giải:
Vậy độ dài đường cao hạ từ A xuống cạnh BC là 2√5.
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về vectơ, các em có thể tham khảo thêm các bài tập sau:
Bài 2.29 trang 40 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và ví dụ minh họa trên, các em học sinh đã hiểu rõ phương pháp giải bài toán này và tự tin làm bài tập. Chúc các em học tốt!
Công thức | Mô tả |
---|---|
a = (x; y) | Vectơ a có tọa độ (x; y) |
a + b = (x1 + x2; y1 + y2) | Phép cộng vectơ |
k.a = (kx; ky) | Phép nhân vectơ với một số thực |
a.b = x1x2 + y1y2 | Tích vô hướng của hai vectơ |