Logo Header
  1. Môn Toán
  2. Giải bài 9.33 trang 64 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 9.33 trang 64 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 9.33 trang 64 Sách bài tập Toán 11 - Kết nối tri thức

Bài 9.33 trang 64 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 9.33 trang 64 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.

Tiếp tuyến của đồ thị hàm số \(y = x{\left( {x - 1} \right)^2} + {x^2} + 1\) tại điểm \(A\left( { - 1\,;\, - 2} \right)\) có phương trình là

Đề bài

Tiếp tuyến của đồ thị hàm số \(y = x{\left( {x - 1} \right)^2} + {x^2} + 1\) tại điểm \(A\left( { - 1\,;\, - 2} \right)\) có phương trình là

A. \(y = 6x + 4\).

B. \(y = 6x - 4\).

C. \(y = - 2x - 4\).

D. \(y = - 2x + 4\).

Phương pháp giải - Xem chi tiếtGiải bài 9.33 trang 64 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Tính \(f'(x)\)

Tiếp tuyến của đồ thị hàm số \(y = x{\left( {x - 1} \right)^2} + {x^2} + 1\) tại điểm có phương trình là\(y = f'( - 1)\left( {x + 1} \right) - 2\)

Lời giải chi tiết

\(f(x) = {x^3} - {x^2} + x + 1 \Rightarrow f'(x) = 3{x^2} - 2x + 1 \Rightarrow f'( - 1) = 6\)

Tiếp tuyến của đồ thị hàm số \(y = x{\left( {x - 1} \right)^2} + {x^2} + 1\) tại điểm có phương trình là\(y = 6\left( {x + 1} \right) - 2 \Leftrightarrow y = 6x + 4\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 9.33 trang 64 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng toán math. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài viết liên quan

Giải bài 9.33 trang 64 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 9.33 trang 64 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài này, học sinh cần nắm vững các kiến thức cơ bản như:

  • Phương trình đường thẳng trong không gian
  • Phương trình mặt phẳng trong không gian
  • Quan hệ giữa đường thẳng và mặt phẳng
  • Các định lý về khoảng cách trong không gian

Dưới đây là lời giải chi tiết bài 9.33 trang 64 Sách bài tập Toán 11 - Kết nối tri thức:

Đề bài:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).

Lời giải:

Bước 1: Xác định các yếu tố cần thiết

Để tính góc giữa đường thẳng SC và mặt phẳng (ABCD), ta cần xác định hình chiếu của điểm S lên mặt phẳng (ABCD). Vì SA vuông góc với (ABCD) nên A là hình chiếu của S lên (ABCD).

Bước 2: Tính độ dài các cạnh

Ta có: AC = a√2 (đường chéo hình vuông)

SC = √(SA² + AC²) = √(a² + (a√2)²) = √(a² + 2a²) = a√3

Bước 3: Tính góc giữa SC và mặt phẳng (ABCD)

Gọi α là góc giữa đường thẳng SC và mặt phẳng (ABCD). Ta có:

tan α = SA / AC = a / (a√2) = 1/√2

α = arctan(1/√2) ≈ 35.26°

Kết luận: Góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.

Phân tích và mở rộng:

Bài toán này là một ví dụ điển hình về việc ứng dụng kiến thức về góc giữa đường thẳng và mặt phẳng trong không gian. Để giải quyết bài toán này, học sinh cần hiểu rõ khái niệm hình chiếu của một điểm lên một mặt phẳng và cách sử dụng các công thức tính góc.

Ngoài ra, bài toán này cũng có thể được giải bằng phương pháp vector. Phương pháp vector thường được sử dụng để giải các bài toán hình học không gian phức tạp.

Các bài tập tương tự:

Để củng cố kiến thức về góc giữa đường thẳng và mặt phẳng, học sinh có thể làm thêm các bài tập tương tự sau:

  • Bài 9.34 trang 64 Sách bài tập Toán 11 - Kết nối tri thức
  • Bài 9.35 trang 64 Sách bài tập Toán 11 - Kết nối tri thức
  • Các bài tập về góc giữa đường thẳng và mặt phẳng trong các đề thi thử THPT Quốc gia

Lưu ý khi giải bài tập:

Khi giải các bài tập về góc giữa đường thẳng và mặt phẳng, học sinh cần chú ý các điểm sau:

  • Xác định đúng hình chiếu của đường thẳng lên mặt phẳng.
  • Sử dụng đúng công thức tính góc.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về bài 9.33 trang 64 Sách bài tập Toán 11 - Kết nối tri thức và tự tin làm bài tập.

Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán!

Tài liệu, đề thi và đáp án Toán 11