Bài 2.1 trang 33 sách bài tập Toán 11 thuộc chương trình học Toán 11 Kết nối tri thức với cuộc sống. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Viết năm số hạng đầu tiên của mỗi dãy số \(\left( {{u_n}} \right)\) sau:
Đề bài
Viết năm số hạng đầu tiên của mỗi dãy số \(\left( {{u_n}} \right)\) sau:
a) \({u_n} = {\left( { - 3} \right)^{n - 1}}.\frac{n}{{2n - 1}}\);
b) \({u_1} = 1;{u_n} = n - {u_{n - 1}}\left( {n \ge 2} \right)\);
Phương pháp giải - Xem chi tiết
Ta kí hiệu \(u = u\left( n \right)\) bởi \(\left( {{u_n}} \right)\), do đó dãy số \(\left( {{u_n}} \right)\) được viết dưới dạng khai triển \({u_1},{u_2},...,{u_n},...\) Số \({u_1}\) gọi là số hạng đầu, số \({u_n}\) là số hạng thứ n và gọi là số hạng tổng quát của dãy số.
Lời giải chi tiết
a) Năm số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) là:
\({u_1} = {\left( { - 1} \right)^0}.\frac{1}{{2.1 - 1}} = 1;{u_2} = {\left( { - 1} \right)^1}.\frac{2}{{2.2 - 1}} = \frac{{ - 2}}{3};{u_3} = {\left( { - 1} \right)^2}.\frac{3}{{2.3 - 1}} = \frac{3}{5};\)
\({u_4} = {\left( { - 1} \right)^3}.\frac{4}{{2.4 - 1}} = \frac{{ - 4}}{7};{u_5} = {\left( { - 1} \right)^4}.\frac{5}{{2.5 - 1}} = \frac{5}{9}\)
b) Năm số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) là:
\({u_1} = 1;{u_2} = 2 - {u_1} = 1;{u_3} = 3 - {u_2} = 2;{u_4} = 4 - {u_3} = 2;{u_5} = 5 - {u_4} = 3\)
Bài 2.1 trang 33 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản và các quy tắc tính giới hạn.
(Nội dung đề bài sẽ được chèn vào đây - ví dụ: Tính các giới hạn sau: a) lim (x->2) (x^2 - 4)/(x - 2); b) lim (x->0) sin(x)/x; c) lim (x->∞) (2x + 1)/(x - 3)...)
Để giải các bài tập về giới hạn, chúng ta có thể sử dụng các phương pháp sau:
(Lời giải chi tiết cho từng phần của bài tập sẽ được trình bày ở đây, bao gồm các bước giải, giải thích và kết luận. Ví dụ:
a) lim (x->2) (x^2 - 4)/(x - 2) = lim (x->2) (x - 2)(x + 2)/(x - 2) = lim (x->2) (x + 2) = 4
b) lim (x->0) sin(x)/x = 1 (Sử dụng định lý giới hạn đặc biệt)
c) lim (x->∞) (2x + 1)/(x - 3) = lim (x->∞) (2 + 1/x)/(1 - 3/x) = 2
)Để củng cố kiến thức về giới hạn, các em có thể tự giải các bài tập tương tự sau:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 2.1 trang 33 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống. Chúc các em học tập tốt!
Khái niệm | Giải thích |
---|---|
Giới hạn của hàm số | Giá trị mà hàm số tiến tới khi x tiến tới một giá trị nhất định. |
Hàm số liên tục | Hàm số không gián đoạn tại một điểm. |