Bài 5.37 trang 88 sách bài tập Toán 11 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hàm số \(f(x) = \left\{ \begin{array}{l}2\,\,\,{\rm{khi}}\,\,\, - 1 < x \le 1\\1 - x\,\,{\rm{khi}}\,\,x \le - 1\,\,{\rm{hay}}\,\,x > 1\end{array} \right.\).
Đề bài
Cho hàm số \(f(x) = \left\{ \begin{array}{l}2\,\,\,{\rm{khi}}\,\,\, - 1 < x \le 1\\1 - x\,\,{\rm{khi}}\,\,x \le - 1\,\,{\rm{hay}}\,\,x > 1\end{array} \right.\). Mệnh đề đúng là
A. Hàm số \(f(x)\) liên tục trên \([ - 1;\,1]\)
B. Hàm số \(f(x)\) liên tục trên \(( - 1;\,1]\)
C. Hàm số \(f(x)\) liên tục trên \([ - 1;\,1)\)
D. Hàm số \(f(x)\) liên tục trên \(\mathbb{R}\).
Phương pháp giải - Xem chi tiết
Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên \(\left[ {a;b} \right]\) nếu nó liên tục trên khoảng \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\;\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)
Lời giải chi tiết
Đáp án C.
Vì hàm số trên là hàm đa thức nên nó liên tục trên các khoảng \(( - \infty ; - 1)\), \(( - 1;1)\) và \((1; + \infty )\).
Xét tại điểm \(x = 1\), \(f(1) = 2,\,\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} (1 - x) = 1 - 1 = 0 \ne f(1)\). Vậy hàm số \(f(x)\)không liên tục tại điểm \(x = 1\).
Xét tại điểm \(x = - 1\), \(f( - 1) = 1 - ( - 1) = 2,\,\mathop {\lim }\limits_{x \to - {1^ - }} f(x) = \mathop {\lim }\limits_{x \to - {1^ - }} (1 - x) = 1 - ( - 1) = 2 = f( - 1)\).
Vậy hàm số \(f(x)\) liên tục tại điểm \(x = - 1\).
Vậy hàm số \(f(x)\) liên tục trên \([ - 1;\,1)\).
Bài 5.37 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài này, chúng ta cần nắm vững các bước sau:
Đề bài: (Giả sử đề bài cụ thể của bài 5.37 được đưa ra ở đây. Ví dụ: Khảo sát hàm số y = x3 - 3x2 + 2)
Giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | ↗ | ↘ | ↗ |
Khảo sát hàm số là một kỹ năng quan trọng trong toán học, có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau như:
Để nắm vững kiến thức về khảo sát hàm số, các em nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Giaitoan.edu.vn cung cấp nhiều bài tập và lời giải chi tiết để các em tham khảo.
Bài 5.37 trang 88 sách bài tập Toán 11 - Kết nối tri thức là một bài tập điển hình về khảo sát hàm số. Việc nắm vững các bước giải và luyện tập thường xuyên sẽ giúp các em học sinh tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.