Bài 1.20 trang 18 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.20 trang 18 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Với giá trị nào của x, mỗi đẳng thức sau đúng?
Đề bài
Với giá trị nào của x, mỗi đẳng thức sau đúng?
a) \(\tan x\cot x = 1\);
b) \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\);
c) \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\);
d) \(\tan x + \cot x = \frac{2}{{\sin 2x}}\).
Phương pháp giải - Xem chi tiết
Vì các đẳng thức đề bài cho đều đúng với mọi x thuộc tập xác định. Nên bài tập trở thành tìm tập xác định của các giá trị lượng giác.
\(\tan x\) có nghĩa khi \(x \ne \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z}).\)
\(\cot x\) có nghĩa khi \(x \ne k\pi \,\,(k \in \mathbb{Z}).\)
Lời giải chi tiết
a) Đẳng thức \(\tan x\cot x = 1\) đúng với mọi x khi \(\tan x\) và \(\cot x\) có nghĩa, tức là:
\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)
b) Đẳng thức \(1 + {\tan ^2}x = \frac{1}{{{{\cos }^2}x}}\) đúng với mọi x khi \(\cos x \ne 0\), tức là\(x \ne \frac{\pi }{2} + k\pi \,\,(k \in \mathbb{Z}).\)
c) Đẳng thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\) đúng với mọi x khi \(\sin x \ne 0\), tức là: \(x \ne k\pi \,\,(k \in \mathbb{Z}).\)
d) Đẳng thức \(\tan x + \cot x = \frac{2}{{\sin 2x}}\) đúng với mọi x khi
\(\left\{ \begin{array}{l}\sin x \ne 0\\\cos x \ne 0\end{array} \right. \Leftrightarrow 2\sin x\cos x \ne 0 \Leftrightarrow \sin 2x \ne 0 \Leftrightarrow 2x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{2}(k \in \mathbb{Z}).\)
Bài 1.20 trang 18 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 1.20 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 1.20 trang 18, chúng ta sẽ đi vào phân tích từng bước giải cụ thể. (Nội dung giải bài tập sẽ được trình bày chi tiết tại đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)
Ví dụ: Giả sử bài tập yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Ta có thể sử dụng tính chất của hình bình hành: vectơ AB = vectơ DC và vectơ AD = vectơ BC. Để chứng minh điều này, ta cần tính các vectơ AB, DC, AD, BC và so sánh chúng.
Bước 1: Xác định tọa độ của các điểm A, B, C, D trong hệ tọa độ.
Bước 2: Tính các vectơ AB, DC, AD, BC theo tọa độ của các điểm.
Bước 3: So sánh các vectơ AB và DC, AD và BC. Nếu AB = DC và AD = BC, thì tứ giác ABCD là hình bình hành.
Sau khi nắm vững cách giải bài 1.20 trang 18, các em có thể luyện tập thêm với các bài tập tương tự để củng cố kiến thức. Một số bài tập gợi ý:
Khi giải bài tập về vectơ, các em cần lưu ý những điều sau:
Bài 1.20 trang 18 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh rèn luyện kỹ năng giải toán về vectơ. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể của Giaitoan.edu.vn, các em sẽ nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.
Khái niệm | Giải thích |
---|---|
Vectơ | Một đoạn thẳng có hướng, được xác định bởi điểm đầu và điểm cuối. |
Tích vô hướng | Một phép toán giữa hai vectơ, cho kết quả là một số thực. |
Bảng tóm tắt các khái niệm quan trọng. |