Bài 1.19 trang 18 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về dãy số, cấp số cộng, cấp số nhân để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.19 trang 18 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Xét tính tuần hoàn của các hàm số sau:
Đề bài
Xét tính tuần hoàn của các hàm số sau:
a) \(y = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) với A > 0;
b) \(y = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\) với A > 0;
c) \(y = 3\sin 2x + 3\cos 2x\);
d) \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right)\).
Phương pháp giải - Xem chi tiết
Bước 1: Tập xác định D.
Bước 2: Chứng minh rằng với mọi \(x \in D\), \(x + T \in D\)và \(f(x + T) = f(x)\).
(Áp dụng \(\sin (x + 2\pi ) = \sin x\) và \(\tan (x + \pi ) = \tan x\)).
Ta chứng minh được câu a, câu b là trường hợp tổng quát của hàm \(y = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) và \(y = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\). Biến đổi câu c,d về dạng câu a,b bằng cách áp dụng công thức
\(\sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\) và công thức biến đổi tổng thành tích.
Lời giải chi tiết
a) Tập xác định: \(D = \mathbb{R}\).
Nếu kí hiệu \(f(x) = {\rm{A}}\sin \left( {\omega x + \varphi } \right)\) thì với mọi \(x \in D\), ta có
\(x + \frac{\pi }{\omega } \in D,\,\,x - \frac{\pi }{\omega } \in D\) và
\(f\left( {x + \frac{{2\pi }}{\omega }} \right) = A\sin \left( {\omega \left( {x + \frac{{2\pi }}{\omega }} \right) + \varphi } \right) = A\sin \left( {\omega x + 2\pi + \varphi } \right) = A\sin \left( {\omega x + \varphi } \right) = f(x)\)
Vậy hàm số đã cho là hàm số tuần hoàn. Chu kì của hàm số này là \(\frac{{2\pi }}{\omega }\).
b) Nếu kí hiệu D là tập xác định của hàm số \(f(x) = {\rm{A}}\tan \left( {\omega x + \varphi } \right)\) thì với mọi \(x \in D\), ta có
\(x + \frac{\pi }{\omega } \in D,\,\,x - \frac{\pi }{\omega } \in D\) và
\(f\left( {x + \frac{\pi }{\omega }} \right) = A\tan \left( {\omega \left( {x + \frac{\pi }{\omega }} \right) + \varphi } \right) = A\tan \left( {\omega x + \pi + \varphi } \right) = A\tan \left( {\omega x + \varphi } \right) = f(x)\)
Vậy hàm số đã cho là hàm số tuần hoàn. Chu kì của hàm số này là \(\frac{\pi }{\omega }\).
c) Ta có \(y = 3\sin 2x + 3\cos 2x = 3(\sin 2x + \cos 2x) = 3\sqrt 2 \sin \left( {2x + \frac{\pi }{4}} \right)\)
Theo như câu a, hàm số \(y = 3\sin 2x + 3\cos 2x\) là hàm số tuần hoàn có chu kì \(\pi \).
d) Ta có:
\(\begin{array}{l}y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right) = 3\left( {\sin \left( {2x + \frac{\pi }{6}} \right) + \sin \left( {2x - \frac{\pi }{3}} \right)} \right)\\\,\,\,\,\, = 3\left( {2\sin \left( {\frac{{\left( {2x + \frac{\pi }{6}} \right) + \left( {2x - \frac{\pi }{3}} \right)}}{2}} \right)\cos \left( {\frac{{\left( {2x + \frac{\pi }{6}} \right) - \left( {2x - \frac{\pi }{3}} \right)}}{2}} \right)} \right)\\\,\,\,\,\, = 3.2\sin \left( {2x - \frac{\pi }{{12}}} \right)\cos \frac{\pi }{4} = 6\sin \left( {2x - \frac{\pi }{{12}}} \right).\frac{{\sqrt 2 }}{2} = 3\sqrt 2 \sin \left( {2x - \frac{\pi }{{12}}} \right).\end{array}\)
Theo như câu a, hàm số \(y = 3\sin \left( {2x + \frac{\pi }{6}} \right) + 3\sin \left( {2x - \frac{\pi }{3}} \right)\) là hàm số tuần hoàn có chu kì \(\pi \).
Bài 1.19 trang 18 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về dãy số, cấp số cộng và cấp số nhân. Để giải bài này, học sinh cần nắm vững các khái niệm cơ bản, công thức tính tổng của cấp số cộng và cấp số nhân, cũng như các phương pháp giải toán liên quan.
Trước khi bắt đầu giải bài, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Bài 1.19 thường yêu cầu tính tổng của một dãy số, hoặc tìm số hạng tổng quát của dãy số đó. Đề bài có thể cho trước một số thông tin về dãy số, chẳng hạn như số hạng đầu, công sai hoặc công bội.
Để giải bài 1.19 trang 18 Sách bài tập Toán 11 - Kết nối tri thức, chúng ta sẽ thực hiện các bước sau:
Ví dụ, giả sử đề bài yêu cầu tính tổng của 10 số hạng đầu tiên của một cấp số cộng có số hạng đầu là 2 và công sai là 3. Ta sẽ thực hiện như sau:
Ngoài bài 1.19, còn rất nhiều bài tập tương tự trong Sách bài tập Toán 11 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh vận dụng kiến thức về dãy số, cấp số cộng và cấp số nhân để giải quyết các bài toán khác nhau. Một số dạng bài tập thường gặp bao gồm:
Để giải bài tập về dãy số một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Để học tập và ôn luyện kiến thức về dãy số, cấp số cộng và cấp số nhân, bạn có thể tham khảo các tài liệu sau:
Bài 1.19 trang 18 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về dãy số, cấp số cộng và cấp số nhân. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà giaitoan.edu.vn cung cấp, các em học sinh sẽ học tập và ôn luyện hiệu quả hơn.