Bài 3.5 trang 50 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.5 trang 50 sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:
Đề bài
Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:
Tính quãng đường trung bình một cầu thủ chạy trong trận đấu này.
Phương pháp giải - Xem chi tiết
Ta có bảng số liệu ghép nhóm:
Số trung bình của mẫu số liệu ghép mẫu là: \(\overline x = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\), trong đó \(n = {m_1} + ... + {m_k}\) là tổng số quan sát (còn gọi là cỡ mẫu) và \({x_i} = \frac{{{a_i} + {a_{i + 1}}}}{2}\) gọi là giá trị đại diện của nhóm \(\left[ {{a_i};{a_{i + 1}}} \right]\)
Lời giải chi tiết
Quãng đường trung bình cầu thủ chạy trong trận đấu là:
\(\frac{{3.2 + 5.5 + 7.6 + 9.9 + 11.3}}{{2 + 5 + 6 + 9 + 3}} = 7,48\left( {km} \right)\)
Bài 3.5 trang 50 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài tập 3.5 thường bao gồm các dạng bài sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập 3.5 trang 50, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)
Bước 1: Xác định tọa độ của điểm A và B. Ta có A(1;2) và B(3;4).
Bước 2: Áp dụng công thức tính tọa độ của vectơ AB: AB = (xB - xA; yB - yA).
Bước 3: Thay tọa độ của A và B vào công thức: AB = (3 - 1; 4 - 2) = (2; 2).
Kết luận: Tọa độ của vectơ AB là (2; 2).
Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:
Ngoài sách giáo khoa và sách bài tập, các em học sinh có thể tham khảo thêm các tài liệu sau:
Bài 3.5 trang 50 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc giải quyết các bài toán về vectơ.
Công thức | Mô tả |
---|---|
AB = (xB - xA; yB - yA) | Công thức tính tọa độ của vectơ AB |
a.b = |a||b|cos(θ) | Công thức tính tích vô hướng của hai vectơ a và b |