Bài 7.52 trang 43 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Cho hình chóp S.ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)
Đề bài
Cho hình chóp S.ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)
a) Chứng minh rằng\((SAC) \bot (SBD)\) và \((SAD) \bot (SCD)\)
b) Gọi BE, DF là hai đường cao của tam giác SBD. Chứng minh \((ACF) \bot (SBC)\) và \((AEF) \bot (SAC)\)
c) Tính theo a khoản cách giữa hai đường thẳng BD và SC
Phương pháp giải - Xem chi tiết
a) Chứng minh \(BD \bot \left( {SAC} \right)\) từ đó suy ra \(\left( {SBD} \right) \bot \left( {SAC} \right)\).
b) Chứng minh \(AF \bot \left( {SBC} \right)\) từ đó suy ra \(\left( {ACF} \right) \bot \left( {SBC} \right)\).
Chứng minh \(SC \bot \left( {AEF} \right)\) suy ra \(\left( {AEF} \right) \bot \left( {SAC} \right)\).
c) Dựng đoạn vuông góc chung của \(BD\) và \(SC\),
Tính độ dài đoạn vuông góc chung của \(BD\) và \(SC\),
Lời giải chi tiết
a) Ta có: \(BD \bot AC,SA \bot \left( {ABCD} \right)\) nên \(SA \bot BD\), suy ra \(BD \bot \left( {SAC} \right)\), mà mặt phẳng \(\left( {SBD} \right)\) chứa đường thẳng \(BD\), do đó \(\left( {SBD} \right) \bot \left( {SAC} \right)\).
Ta có: \(CD \bot AD,CD \bot SA\), suy ra \(CD \bot \left( {SAD} \right)\), mà mặt phẳng \(\left( {SCD} \right)\) chứa đường thẳng \(CD\), do đó \(\left( {SCD} \right) \bot \left( {SAD} \right)\).
b) Ta có: \(AD \bot \left( {SAB} \right)\) nên \(AD \bot SB\), mà \(SB \bot DF\) suy ra \(SB \bot \left( {ADF} \right)\), do đó
\(SB \bot AF\).
Ta lại có \(BC \bot \left( {SAB} \right)\) nên \(BC \bot AF\), suy ra \(AF \bot \left( {SBC} \right)\), mà mặt phẳng \(\left( {ACF} \right)\) chứa đường thẳng \(AF\) nên \(\left( {ACF} \right) \bot \left( {SBC} \right)\).
Vì \(AF \bot \left( {SBC} \right)\) nên \(AF \bot SC\).
Tương tự, ta có \(AE \bot \left( {SCD} \right)\) nên \(AE \bot SC\), suy ra \(SC \bot \left( {AEF} \right)\), mà mặt phẳng \(\left( {SAC} \right)\) chứa đường thẳng \(SC\) nên \(\left( {AEF} \right) \bot \left( {SAC} \right)\).
c) Gọi \(O\) là giao điểm của \(AC\) và \(BD\), kẻ \(OH \bot SC\) tại \(H\), mà \(BD \bot \left( {SAC} \right)\) nên \(OH \bot BD\), suy ra \(OH\) là đoạn vuông góc chung của \(BD\) và \(SC\), hay \(d\left( {BD,SC} \right) = OH\)
Ta có: \(\Delta CHO\) đồng dạng với \(\Delta CAS\) nên \(\frac{{OC}}{{CS}} = \frac{{OH}}{{AS}}\), suy ra \(OH = \frac{{AS \cdot OC}}{{CS}} = \frac{a}{2}\).
Vậy \(d\left( {BD,SC} \right) = \frac{a}{2}\).
Bài 7.52 trang 43 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài toán ứng dụng đạo hàm để giải quyết các vấn đề thực tế. Để giải bài toán này, học sinh cần nắm vững các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và cách sử dụng đạo hàm để tìm cực trị của hàm số.
Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 7.52, đề bài yêu cầu chúng ta tìm giá trị lớn nhất và giá trị nhỏ nhất của một hàm số trên một khoảng cho trước. Để làm được điều này, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cần xét là f(x) = x^3 - 3x^2 + 2 trên khoảng [-1, 3].
Khi giải các bài tập về đạo hàm, học sinh cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Bài 7.52 trang 43 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng vận dụng đạo hàm để giải quyết các bài toán thực tế. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập này và đạt kết quả tốt trong kỳ thi.