Bài 2.20 trang 37 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 2.20 trang 37, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Nếu p, m và q lập thành một cấp số cộng thì dễ thấy \(m = \frac{{p + q}}{2}\).
Đề bài
Nếu p, m và q lập thành một cấp số cộng thì dễ thấy \(m = \frac{{p + q}}{2}\). Số m gọi là trung bình cộng của p và q. Cho hai số p và q, nếu ta tìm được k số khác \({m_1},{m_2},...,{m_k}\) sao cho \(p,{m_1},{m_2},...,{m_k},q\) lập thành một cấp số cộng, chúng ta nói rằng ta đã “chèn k trung bình cộng vào giữa p và q”
a) Hãy chèn ba trung bình cộng vào 4 và 12.
b) Tìm bốn trung bình cộng nằm giữa 16 và 91
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về cấp số cộng:
Nếu cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) được xác định theo công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Lời giải chi tiết
a) Theo định nghĩa, chèn ba trung bình cộng vào giữa 4 và 12 thì ta được cấp số cộng có \({u_1} = 4\) và \({u_{2 + 3}} = {u_5} = 12.\) Theo tính chất của cấp số cộng nên \({u_5} = {u_1} + 4d \Rightarrow d = 2\)
Vậy chèn ba trung bình cộng vào giữa 4 và 12 ta được cấp số cộng là 4, 6, 8, 10, 12.
b) Theo định nghĩa, chèn bốn trung bình cộng vào giữa 16 và 91 thì ta được cấp số cộng có \({u_1} = 6\) và \({u_{2 + 4}} = {u_6} = 91.\) Theo tính chất của cấp số cộng nên \({u_6} = {u_1} + 5d \Rightarrow d = 15\)
Vậy chèn bốn trung bình cộng vào giữa 16 và 91 ta được cấp số cộng là 16, 31, 46, 61, 76, 91.
Bài 2.20 trang 37 sách bài tập Toán 11 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, chúng ta cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Sau đó, chúng ta cần phân tích bài toán để tìm ra hướng giải phù hợp. Thông thường, bài toán về vectơ sẽ yêu cầu chúng ta:
(Nội dung lời giải chi tiết bài 2.20 trang 37 sẽ được trình bày tại đây. Bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)
Đề bài: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SB và mặt phẳng (ABCD).
Lời giải:
Ngoài bài 2.20 trang 37, sách bài tập Toán 11 Kết nối tri thức còn có nhiều bài tập tương tự về vectơ. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các đề thi thử. Ngoài ra, các em có thể tham khảo các tài liệu học tập trực tuyến và các video hướng dẫn giải bài tập trên Youtube.
Bài 2.20 trang 37 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên đây, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập.