Bài 7.33 trang 41 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.33 trang 41, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right);\)\(AB = a;\)\(AC = a\sqrt 2 \)
Đề bài
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right);\)\(AB = a;\)\(AC = a\sqrt 2 \) và \(\widehat {SBA} = 60^\circ \), \(\widehat {BAC} = 45^\circ \). Tính theo \(a\) thể tích khối chóp \(S.ABC\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính thể tích khối chóp: \(S = \frac{1}{3}Bh\).
Trong đó: \(B\) là diện tích đa giác đáy
\(h\)là đường cao của hình chóp
Lời giải chi tiết
Ta có: \(SA = AB \cdot {\rm{tan}}60^\circ = a\sqrt 3 \); \({S_{ABC}} = \frac{1}{2} \cdot AB \cdot AC \cdot {\rm{sin}}\widehat {BAC} = \frac{{{a^2}}}{2}\)
Vậy \({V_{S \cdot ABC}} = \frac{1}{3} \cdot {S_{ABC}} \cdot SA = \frac{{{a^3}\sqrt 3 }}{6}\).
Bài 7.33 trang 41 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản như:
Dưới đây là đề bài và lời giải chi tiết:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Bước 1: Xác định các yếu tố cần thiết
Để tính góc giữa đường thẳng SC và mặt phẳng (ABCD), ta cần tìm hình chiếu của SC lên mặt phẳng (ABCD). Gọi H là hình chiếu của S lên mặt phẳng (ABCD). Vì SA vuông góc với (ABCD) nên H trùng với A.
Bước 2: Tính độ dài các cạnh
Ta có: AC = a√2 (đường chéo hình vuông)
Trong tam giác vuông SAC, ta có: SC = √(SA2 + AC2) = √(a2 + (a√2)2) = √(a2 + 2a2) = a√3
Bước 3: Tính góc giữa SC và mặt phẳng (ABCD)
Góc giữa đường thẳng SC và mặt phẳng (ABCD) chính là góc SCA. Ta có:
tan(SCA) = SA/AC = a/(a√2) = 1/√2
Suy ra: SCA = arctan(1/√2) ≈ 35.26°
Kết luận: Góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.
Ngoài bài 7.33, còn rất nhiều bài tập tương tự liên quan đến góc giữa đường thẳng và mặt phẳng. Để giải các bài tập này, học sinh cần:
Một số dạng bài tập thường gặp:
Để củng cố kiến thức và kỹ năng giải bài tập, các em học sinh nên luyện tập thêm các bài tập khác trong sách bài tập và các đề thi thử. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập khác với lời giải chi tiết, giúp các em tự tin hơn trong kỳ thi.
Bài 7.33 trang 41 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ về góc giữa đường thẳng và mặt phẳng. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn trong việc giải bài tập và đạt kết quả tốt trong môn Toán.