Bài 6.26 trang 14 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.26 trang 14 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và tự tin làm bài tập.
Ta định nghĩa các hàṃ sin hyperbolic và hàm côsin hyperbolic
Đề bài
Ta định nghĩa các hàṃ sin hyperbolic và hàm côsin hyperbolic như sau: \({\rm{sinh}}x = \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right);{\rm{cosh}}x = \frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right)\)
Chứng minh rằng:
a) \({\rm{sinh}}x\) là hàm số lẻ:;
b) \({\rm{cosh}}x\) là hàm số chẵn;
c) \({({\rm{cosh}}x)^2} - {({\rm{sinh}}x)^2} = 1\) với mọi \(x\).
Phương pháp giải - Xem chi tiết
Áp dụng định nghĩa hàm lẻ, hàm chẵn
Hàm số \(y = f(x)\) có tập xác định \(D\)
Hàm số \(y = f(x)\) là hàm số lẻ trên \(D \Leftrightarrow \left\{ \begin{array}{l}\forall x \in D \Rightarrow - x \in D\\f\left( { - x} \right) = - f\left( x \right)\end{array} \right.\)
Hàm số \(y = f(x)\) là hàm số chẵn trên \(D \Leftrightarrow \left\{ \begin{array}{l}\forall x \in D \Rightarrow - x \in D\\f\left( { - x} \right) = f\left( x \right)\end{array} \right.\)
Lời giải chi tiết
a) Hàm số \(f\left( x \right) = {\rm{sinh}}x\) có tập xác định \(D = \mathbb{R}\)
Ta có \(\forall x \in D \Rightarrow - x \in D\)
\(f\left( x \right) = {\rm{sinh}}x = \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right) \Rightarrow f\left( { - x} \right) = \frac{1}{2}\left( {{e^{ - x}} - {e^x}} \right) = - f\left( x \right),\forall x \in \mathbb{R}\).
Do đó, sinh\(x\) là hàm số lẻ.
b) Hàm số \(g\left( x \right) = {\rm{cosh}}x\) có tập xác định \(D = \mathbb{R}\)
Ta có \(\forall x \in D \Rightarrow - x \in D\)
\(g\left( x \right) = {\rm{cosh}}x = \frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right) \Rightarrow g\left( { - x} \right) = \frac{1}{2}\left( {{e^{ - x}} + {e^x}} \right) = g\left( x \right),\forall x \in \mathbb{R}\).
Do đó, \({\rm{cosh}}x\) là hàm số chẵn.
c) Ta có: \({({\rm{cosh}}x)^2} - {({\rm{sinh}}x)^2} = \frac{1}{4}{\left( {{e^x} + {e^{ - x}}} \right)^2} - \frac{1}{4}{\left( {{e^x} - {e^{ - x}}} \right)^2} = \frac{1}{4} \cdot 2{e^{ - x}} \cdot 2{e^x} = 1\).
Bài 6.26 trang 14 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản như:
Dưới đây là lời giải chi tiết bài 6.26 trang 14 Sách bài tập Toán 11 - Kết nối tri thức:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông cạnh a nên AC = BD = a√2 và AO = BO = CO = DO = a√2 / 2.
Vì SA vuông góc với mặt phẳng (ABCD) nên SA vuông góc với mọi đường thẳng nằm trong mặt phẳng (ABCD), đặc biệt là SA vuông góc với AC.
Xét tam giác SAC vuông tại A, ta có:
tan(∠SCA) = SA / AC = a / (a√2) = 1/√2
Suy ra ∠SCA = arctan(1/√2) ≈ 35.26°
Gọi φ là góc giữa đường thẳng SC và mặt phẳng (ABCD). Ta có:
φ = ∠SCA = arctan(1/√2) ≈ 35.26°
Vậy, góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.
Trong quá trình giải bài tập, học sinh cần chú ý:
Để hiểu sâu hơn về bài toán này, học sinh có thể tìm hiểu thêm về:
Để rèn luyện kỹ năng giải bài tập, học sinh có thể làm thêm các bài tập tương tự như:
Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về bài 6.26 trang 14 Sách bài tập Toán 11 - Kết nối tri thức và tự tin hơn trong quá trình học tập. Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục tri thức.
Ngoài ra, các bạn có thể tham khảo thêm các bài giải khác tại giaitoan.edu.vn để nâng cao kiến thức và kỹ năng giải toán.