Logo Header
  1. Môn Toán
  2. Giải bài 7.40 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.40 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.40 trang 41 Sách bài tập Toán 11 - Kết nối tri thức

Bài 7.40 trang 41 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Người ta cắt bỏ bốn hình vuông cùng kích thước ở bốn góc của một tấm tôn hình vuông có cạnh \(1{\rm{\;m}}\)

Đề bài

Người ta cắt bỏ bốn hình vuông cùng kích thước ở bốn góc của một tấm tôn hình vuông có cạnh \(1{\rm{\;m}}\) để gò lại thành một chiếc thùng có dạng hình hộp chữ nhật không nắp. Hỏi cạnh của các hình vuông cần bỏ đi có độ dài bằng bao nhiêu để thùng hình hộp nhận được có thể tích lớn nhất?

Phương pháp giải - Xem chi tiếtGiải bài 7.40 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Áp dụng công thức tính thể tích khối hộp chữ nhật: \({\rm{V}} = a.b.c\).

Trong đó: \(a,b,c\) là độ dài 3 cạnh hình hộp chữ nhật có chung 1 đỉnh

Bước 1: Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài cạnh hình vuông nhỏ tại mỗi góc của tấm tôn được cắt bỏ đi (với \(0 < x < \frac{1}{2}\) ).

Tính thể tích hình hộp chữ nhật nhận được

Bước 2: Tìm giá trị lớn nhất của thể tích hình hộp chữ nhật nhận được

Từ đó tìm \(x\)

Lời giải chi tiết

Giải bài 7.40 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 2

Gọi \(x\left( {{\rm{\;m}}} \right)\) là chiều dài cạnh hình vuông nhỏ tại mỗi góc của tấm tôn được cắt bỏ đi (với \(0 < x < \frac{1}{2}\) ).

Thể tích hình hộp chữ nhật nhận được là

\(V = {(1 - 2x)^2} \cdot x = \frac{1}{4} \cdot \left( {1 - 2x} \right) \cdot \left( {1 - 2x} \right) \cdot 4x \le \frac{1}{4} \cdot {\left( {\frac{{1 - 2x + 1 - 2x + 4x}}{3}} \right)^3} = \frac{2}{{27}}\)

Dấu "=" xảy ra khi \(1 - 2x = 4x \Leftrightarrow x = \frac{1}{6}\).

Vậy để thể tích chiếc thùng là lớn nhất thì các cạnh của hình vuông được cắt bỏ đi là \(\frac{1}{6}{\rm{\;m}}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7.40 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng học toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7.40 trang 41 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 7.40 trang 41 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống thuộc chương trình học Toán 11, tập trung vào ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và cách sử dụng đạo hàm để tìm cực trị, khoảng đơn điệu của hàm số.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài tập, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 7.40, học sinh cần xác định hàm số, tìm đạo hàm của hàm số đó và sau đó sử dụng đạo hàm để giải quyết các vấn đề được đặt ra trong đề bài.

Các bước giải bài 7.40 trang 41

  1. Bước 1: Xác định hàm số: Đọc đề bài và xác định hàm số cần phân tích.
  2. Bước 2: Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số.
  3. Bước 3: Tìm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  4. Bước 4: Xác định khoảng đơn điệu: Xét dấu đạo hàm trên các khoảng xác định để xác định khoảng đơn điệu của hàm số.
  5. Bước 5: Kết luận: Dựa trên kết quả tìm được, đưa ra kết luận về cực trị và khoảng đơn điệu của hàm số.

Ví dụ minh họa

Giả sử đề bài yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2.

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Tìm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  3. Xác định khoảng đơn điệu: Xét dấu f'(x) trên các khoảng (-∞, 0), (0, 2) và (2, +∞).
  4. Kết luận: Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Lưu ý khi giải bài tập

  • Luôn kiểm tra lại kết quả sau khi giải bài tập.
  • Sử dụng máy tính cầm tay để kiểm tra lại các phép tính.
  • Tham khảo các tài liệu học tập khác để hiểu rõ hơn về các khái niệm và công thức.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức với cuộc sống. Ngoài ra, bạn cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán.

Tổng kết

Giải bài 7.40 trang 41 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống đòi hỏi học sinh phải nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm. Bằng cách thực hành thường xuyên và áp dụng các kiến thức đã học vào giải quyết các bài toán thực tế, học sinh có thể nâng cao kỹ năng giải toán và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11