Bài 8.25 trang 53 sách bài tập Toán 11 thuộc chương trình Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về ứng dụng của đạo hàm để khảo sát hàm số.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.25, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Hãy cùng theo dõi lời giải chi tiết dưới đây để hiểu rõ phương pháp giải và áp dụng vào các bài tập khác nhé!
Một lớp 40 học sinh, trong đó có 22 em học khá môn Toán, 25 em học khá môn Ngữ văn
Đề bài
Một lớp 40 học sinh, trong đó có 22 em học khá môn Toán, 25 em học khá môn Ngữ văn và 3 em không học khá cả hai môn này. Chọn ngẫu nhiên một học sinh trong lớp. Tính xác suất để em đó:
a) Học khá ít nhất một trong hai môn Toán hoặc Ngữ văn.
b) Học khá cả môn Toán và môn Ngữ văn.
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc cộng xác suất
\(A\) : "Học sinh đó học khá môn Toán",
\(B\) : "Học sinh đó học khá môn Ngữ văn".
Tính \(P\left( A \right),P\left( B \right),P\left( {\overline A \overline B } \right)\). a) \(A \cup B\): “Học khá ít nhất một trong hai môn Toán hoặc Ngữ văn”
Tính \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right)\). b) \(AB\) : “Học khá cả môn Toán và môn Ngữ văn”
Tính \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right)\).
Lời giải chi tiết
Xét các biến cố \(A\) : "Học sinh đó học khá môn Toán",
\(B\) : "Học sinh đó học khá môn Ngữ văn".
Ta có \(P\left( A \right) = \frac{{22}}{{40}},P\left( B \right) = \frac{{25}}{{40}},P\left( {\overline A \overline B } \right) = \frac{3}{{40}}\). a) \(A \cup B\): “Học khá ít nhất một trong hai môn Toán hoặc Ngữ văn” \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - \frac{3}{{40}} = \frac{{37}}{{40}}\). b) \(AB\) : “Học khá cả môn Toán và môn Ngữ văn”\(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{{22}}{{40}} + \frac{{25}}{{40}} - \frac{{37}}{{40}} = \frac{{10}}{{40}} = \frac{1}{4}\).
Bài 8.25 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài này, chúng ta cần thực hiện các bước sau:
Đề bài: (SBT Toán 11 Kết nối tri thức trang 53) Khảo sát hàm số sau:
f(x) = x3 - 3x2 + 2
Giải:
1. Tập xác định: Hàm số f(x) = x3 - 3x2 + 2 xác định trên ℝ.
2. Đạo hàm bậc nhất: f'(x) = 3x2 - 6x
3. Tìm điểm dừng: f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
4. Lập bảng biến thiên:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | 0 | - | + |
f(x) | 2 | -2 | ||
Đồng biến | ||||
Nghịch biến | ||||
Cực đại | f(0) = 2 | |||
Cực tiểu | f(2) = -2 |
5. Kết luận:
Để hiểu sâu hơn về phương pháp khảo sát hàm số bằng đạo hàm, các em có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 Kết nối tri thức. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và tự tin giải các bài tập khó hơn.
Ngoài ra, các em cũng có thể tìm hiểu thêm về các ứng dụng của đạo hàm trong thực tế, chẳng hạn như việc tối ưu hóa các bài toán kinh tế, kỹ thuật.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!