Logo Header
  1. Môn Toán
  2. Giải bài 6.25 trang 14 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 6.25 trang 14 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức

Bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\,\,\,\,(0 < a \ne 1)\). Chứng minh rằng:

Đề bài

Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\,\,\,\,(0 < a \ne 1)\). Chứng minh rằng:

a) \(f\left( {\frac{1}{x}} \right) = - f\left( x \right)\)

b) \(f\left( {{x^\alpha }} \right) = \alpha f\left( x \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 6.25 trang 14 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Áp dụng quy tắc tính lôgarit

Giả sử a là số thực dương khác \(1,\,M\) và \(N\) là các số thực dương, \(\alpha \) là số thực tuỳ ý.

\(\begin{array}{l}{\log _a}(MN) = {\log _a}M + {\log _a}N;\\{\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N;{\log _a}\frac{1}{b} = {\log _a}1 - {\log _a}b = {\log _a}b\\{\log _a}{M^a} = \alpha {\log _a}M.\end{array}\)

Lời giải chi tiết

a) \(f\left( {\frac{1}{x}} \right) = {\rm{lo}}{{\rm{g}}_a}\frac{1}{x} = - {\rm{lo}}{{\rm{g}}_a}x = - f\left( x \right)\)

b) \(f\left( {{x^\alpha }} \right) = {\rm{lo}}{{\rm{g}}_a}{x^\alpha } = \alpha {\rm{lo}}{{\rm{g}}_a}x = \alpha f\left( x \right)\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 6.25 trang 14 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng toán math. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng, ứng dụng của tích vô hướng.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, giải các bài toán về hình học phẳng và không gian.

Nội dung bài tập 6.25

Bài 6.25 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Phân tích các vectơ thành các thành phần.
  2. Thực hiện các phép toán vectơ.
  3. Tính tích vô hướng của các vectơ.
  4. Sử dụng các tính chất của vectơ để chứng minh các đẳng thức hoặc giải các bài toán hình học.

Lời giải chi tiết bài 6.25 trang 14

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 6.25 trang 14, chúng ta sẽ cùng nhau phân tích và giải bài tập này một cách chi tiết. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng từng bước và các lưu ý quan trọng.)

Ví dụ minh họa

Để minh họa cho cách giải bài 6.25, chúng ta sẽ xét một ví dụ cụ thể. (Nội dung ví dụ minh họa sẽ được trình bày tại đây, bao gồm đề bài, lời giải và giải thích chi tiết.)

Mở rộng kiến thức

Ngoài bài 6.25, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức để rèn luyện kỹ năng giải toán. Các em cũng có thể tìm hiểu thêm về các ứng dụng của vectơ trong các lĩnh vực khác nhau của khoa học và kỹ thuật.

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng các công thức và tính chất của vectơ một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Rèn luyện thường xuyên để nắm vững kiến thức và kỹ năng.

Tổng kết

Bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập này và đạt kết quả tốt trong học tập.

Bảng tổng hợp các công thức vectơ quan trọng

Công thứcMô tả
a + b = b + aTính giao hoán của phép cộng vectơ
a + (b + c) = (a + b) + cTính kết hợp của phép cộng vectơ
a.b = |a||b|cos(θ)Công thức tính tích vô hướng của hai vectơ
Ghi chú: a, b, c là các vectơ, θ là góc giữa hai vectơ a và b.

Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục tri thức. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 11