Bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\,\,\,\,(0 < a \ne 1)\). Chứng minh rằng:
Đề bài
Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\,\,\,\,(0 < a \ne 1)\). Chứng minh rằng:
a) \(f\left( {\frac{1}{x}} \right) = - f\left( x \right)\)
b) \(f\left( {{x^\alpha }} \right) = \alpha f\left( x \right)\)
Phương pháp giải - Xem chi tiết
Áp dụng quy tắc tính lôgarit
Giả sử a là số thực dương khác \(1,\,M\) và \(N\) là các số thực dương, \(\alpha \) là số thực tuỳ ý.
\(\begin{array}{l}{\log _a}(MN) = {\log _a}M + {\log _a}N;\\{\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N;{\log _a}\frac{1}{b} = {\log _a}1 - {\log _a}b = {\log _a}b\\{\log _a}{M^a} = \alpha {\log _a}M.\end{array}\)
Lời giải chi tiết
a) \(f\left( {\frac{1}{x}} \right) = {\rm{lo}}{{\rm{g}}_a}\frac{1}{x} = - {\rm{lo}}{{\rm{g}}_a}x = - f\left( x \right)\)
b) \(f\left( {{x^\alpha }} \right) = {\rm{lo}}{{\rm{g}}_a}{x^\alpha } = \alpha {\rm{lo}}{{\rm{g}}_a}x = \alpha f\left( x \right)\).
Bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 6.25 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 6.25 trang 14, chúng ta sẽ cùng nhau phân tích và giải bài tập này một cách chi tiết. (Nội dung lời giải chi tiết sẽ được trình bày tại đây, bao gồm các bước giải, giải thích rõ ràng từng bước và các lưu ý quan trọng.)
Để minh họa cho cách giải bài 6.25, chúng ta sẽ xét một ví dụ cụ thể. (Nội dung ví dụ minh họa sẽ được trình bày tại đây, bao gồm đề bài, lời giải và giải thích chi tiết.)
Ngoài bài 6.25, các em học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức để rèn luyện kỹ năng giải toán. Các em cũng có thể tìm hiểu thêm về các ứng dụng của vectơ trong các lĩnh vực khác nhau của khoa học và kỹ thuật.
Bài 6.25 trang 14 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập này và đạt kết quả tốt trong học tập.
Công thức | Mô tả |
---|---|
a + b = b + a | Tính giao hoán của phép cộng vectơ |
a + (b + c) = (a + b) + c | Tính kết hợp của phép cộng vectơ |
a.b = |a||b|cos(θ) | Công thức tính tích vô hướng của hai vectơ |
Ghi chú: a, b, c là các vectơ, θ là góc giữa hai vectơ a và b. |
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục tri thức. Chúc các em học tập tốt!