Bài 5.30 trang 87 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu và chính xác nhất cho bài tập này, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Tính tổng \(S = - \frac{2}{3} + \frac{2}{9} - \frac{2}{{27}} + ... + {( - 1)^n}.\frac{2}{{{3^n}}} + ...\)
Đề bài
Tính tổng \(S = - \frac{2}{3} + \frac{2}{9} - \frac{2}{{27}} + ... + {( - 1)^n}.\frac{2}{{{3^n}}} + ...\)
A. \(S = \frac{1}{2}\)
B.\(S = - \frac{1}{2}\)
C.\(S = - 3\)
D. \(S = 3\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\).
Lời giải chi tiết
Đáp án B
\(S = - \frac{2}{3} + \frac{2}{9} - \frac{2}{{27}} + ... + {( - 1)^n}.\frac{2}{{{3^n}}} + ...\)
Ta thấy đây là cấp số nhân với số hạng đầu tiên là \({u_1} = \frac{{ - 2}}{3}\) và \(q = - \frac{1}{3}\). Nên:
\(S = \frac{{{u_1}}}{{1 - q}} = \frac{{\frac{{ - 2}}{3}}}{{1 - - \frac{1}{3}}} = - \frac{1}{2}\).
Bài 5.30 trang 87 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài toán thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Để giải bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, phương trình đường thẳng, phương trình mặt phẳng và các mối quan hệ giữa chúng.
Trước khi bắt đầu giải bài toán, học sinh cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 5.30, yêu cầu thường là xác định vị trí tương đối giữa đường thẳng và mặt phẳng, tìm giao điểm của đường thẳng và mặt phẳng, hoặc tính khoảng cách từ một điểm đến mặt phẳng.
Đề bài: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Tìm giao điểm của đường thẳng d và mặt phẳng (P).
Giải:
Thay phương trình tham số của đường thẳng d vào phương trình mặt phẳng (P), ta được:
2(1 + t) - (2 - t) + (3 + 2t) - 5 = 0
2 + 2t - 2 + t + 3 + 2t - 5 = 0
5t - 2 = 0
t = 2/5
Thay t = 2/5 vào phương trình tham số của đường thẳng d, ta được:
x = 1 + 2/5 = 7/5
y = 2 - 2/5 = 8/5
z = 3 + 2(2/5) = 3 + 4/5 = 19/5
Vậy giao điểm của đường thẳng d và mặt phẳng (P) là điểm I(7/5, 8/5, 19/5).
Để củng cố kiến thức và kỹ năng giải bài toán, học sinh nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Bài 5.30 trang 87 sách bài tập Toán 11 - Kết nối tri thức với cuộc sống là một bài tập quan trọng giúp học sinh củng cố kiến thức về đường thẳng và mặt phẳng trong không gian. Bằng cách nắm vững các kiến thức cơ bản và áp dụng các phương pháp giải bài toán một cách linh hoạt, học sinh có thể tự tin giải quyết bài toán này và đạt kết quả tốt trong học tập.