Bài 1.27 trang 24 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 1.27 trang 24 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0\)
b) \(2\sin 2x - \sin 4x = 0\)
c) \({\cos ^6}x - {\sin ^6}x = 0\)
d) \(\tan 2x\cot x = 1\)
Phương pháp giải - Xem chi tiết
a) Sử dụng cách giải phương trình \(\sin x = m\) (1)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\sin \alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\sin x = m \Leftrightarrow \sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\sin x = \sin {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}x = {\alpha ^0} + k{360^0}\\x = {180^0} - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\sin u = \sin v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = \pi - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) Sử dụng cách giải phương tình \(\cos \,x = m\) (2)
+ Nếu \(\left| m \right| > 1\) thì phương trình (1) vô nghiệm.
+ Nếu \(\left| m \right| \le 1\) thì tồn tại duy nhất số \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) thỏa mãn \(\cos \,\alpha = m\).
Khi đó, phương trình (1) tương đương với:
\(\cos x = m \Leftrightarrow \cos x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\cos x = \cos {\alpha ^0} \Leftrightarrow \left[ \begin{array}{l}\cos = {\alpha ^0} + k{360^0}\\\cos = - \alpha + k{360^0}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\cos u = \cos v \Leftrightarrow \left[ \begin{array}{l}u = v + k2\pi \\x = - v + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
c) Sử dụng cách giải phương trình \(\tan \,x = m\left( 3 \right)\)
Phương trình (3) luôn có nghiệm với mọi giá trị của tham số m.
Luôn tồn tại duy nhất số \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\)
Khi đó, phương trình (3) tương đương với:
\(\tan x = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\)
- Nếu góc \(\alpha \) được cho bằng đơn vị độ thì công thức nghiệm trở thành:
\(\tan x = \tan {\alpha ^0} \Leftrightarrow x = {\alpha ^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\)
- Nếu u, v là các biểu thức của x thì: \(\tan u = \tan v \Leftrightarrow u = v + k\pi \left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
a) \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 + \cos x = 0\left( {VL} \right)\\3\cos 2x - 1 = 0\end{array} \right. \Leftrightarrow \cos 2x = \frac{1}{3}\)
Gọi \(\alpha \) là góc thỏa mãn \(\cos \alpha = \frac{1}{3}.\) Do đó: \(\cos 2x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}2x = \alpha + k2\pi \\2x = - \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\alpha }{2} + k\pi \\x = - \frac{\alpha }{2} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\sin 2x - \sin 4x = 0 \Leftrightarrow 2\sin 2x - 2\sin 2x\cos 2x = 0 \Leftrightarrow 2\sin 2x\left( {1 - \cos 2x} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\1 - \cos 2x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\2x = \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \frac{\pi }{4} + k\pi \end{array} \right. \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)
c) \({\cos ^6}x - {\sin ^6}x = 0 \Leftrightarrow {\left( {{{\cos }^2}x} \right)^3} = {\left( {{{\sin }^2}x} \right)^3} \Leftrightarrow {\cos ^2}x = {\sin ^2}x \Leftrightarrow {\cos ^2}x - {\sin ^2}x = 0\)
\( \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)
d) Điều kiện: \(\cos 2x \ne 0,\sin x \ne 0\)
\(\tan 2x\cot x = 1 \Leftrightarrow \tan 2x = \tan x \Leftrightarrow 2x = x + k\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\)
Ta thấy \(x = k\pi \) không thỏa mãn điều kiện. Vậy phương trình đã cho vô nghiệm
Bài 1.27 trang 24 Sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Bài 1.27 yêu cầu học sinh giải quyết một bài toán liên quan đến việc sử dụng vectơ để chứng minh một đẳng thức hình học hoặc tìm một điểm thỏa mãn một điều kiện nào đó. Cụ thể, bài tập thường cho một hình hình học (tam giác, hình bình hành, hình hộp...) và yêu cầu chứng minh một mối quan hệ giữa các điểm hoặc các đoạn thẳng trong hình đó bằng cách sử dụng các phép toán vectơ.
Để giải bài 1.27 trang 24 Sách bài tập Toán 11 - Kết nối tri thức, chúng ta sẽ thực hiện theo các bước sau:
Ví dụ, giả sử bài tập yêu cầu chứng minh rằng tứ giác ABCD là hình bình hành. Chúng ta có thể sử dụng vectơ để chứng minh điều này bằng cách chứng minh rằng AB = DC và AD = BC. Để làm điều này, chúng ta cần biểu diễn các vectơ AB, DC, AD, BC qua các tọa độ của các điểm A, B, C, D và sau đó so sánh các tọa độ của chúng.
Sau khi giải xong bài 1.27 trang 24, học sinh có thể tự luyện tập thêm các bài tập tương tự để củng cố kiến thức và kỹ năng. Các bài tập tương tự có thể bao gồm:
Khi giải bài tập về vectơ, học sinh cần lưu ý một số điều sau:
Bài 1.27 trang 24 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán về vectơ. Bằng cách nắm vững kiến thức cơ bản và thực hành giải nhiều bài tập tương tự, học sinh có thể tự tin giải quyết các bài toán về vectơ trong chương trình học Toán 11.