Logo Header
  1. Môn Toán
  2. Giải bài 6.28 trang 15 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 6.28 trang 15 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 6.28 trang 15 Sách bài tập Toán 11 - Kết nối tri thức

Bài 6.28 trang 15 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 11. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.28 trang 15 Sách bài tập Toán 11 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Số tiền ban đầu 120 triệu đồng được gửi tiết kiệm với lãi suất năm không đổi là \(6{\rm{\% }}\).

Đề bài

Số tiền ban đầu 120 triệu đồng được gửi tiết kiệm với lãi suất năm không đổi là \(6{\rm{\% }}\). Tính số tiền (cả vốn lẫn lãi) thu được sau 5 năm nếu nó được tính lãi kép:

a) hằng quý;

b) hằng tháng;

c) liên tục.

(Kết quả được tính theo đơn vị triệu đồng và làm tròn đến chữ số thập phân thứ ba).

Phương pháp giải - Xem chi tiếtGiải bài 6.28 trang 15 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Để giải câu a và câu \({\rm{b}}\), ta sử dụng công thức lãi kép theo định kì để tính tổng số tiền thu được \(A = P{\left( {1 + \frac{r}{n}} \right)^t}\); trong đó \(P\) là số tiền vốn ban đầu, \(r\) là lãi suất năm ( \(r\) cho dưới dạng số thập phân), \(n\) là số kì tính lãi trong một năm và \(t\) là số kì gửi.

a) Tą có: \(P = 120,r = 6{\rm{\% }} = 0,06,n = 4,t = 20\).

Thay vào công thức \(A = P{\left( {1 + \frac{r}{n}} \right)^t}\) để tìm \(A\)

b) Ta có: \(P = 120,r = 6{\rm{\% }} = 0,06,n = 12,t = 60\). Thay vào công thức \(A = P{\left( {1 + \frac{r}{n}} \right)^t}\) tìm được \(A\)

c) Ta sử dụng công thức lãi kép liên tục \(A = P{e^{rt}}\), ở đây \(r\) là lãi suất năm ( \(r\) cho dưới dạng số thập phân) và \(t\) là số năm gửi tiết kiệm.

Ta có: \(P = 120,r = 6{\rm{\% }} = 0,06,t = 5\) thay vào công thức \(A = P{e^{rt}}\)

Lời giải chi tiết

Để giải câu a và câu \({\rm{b}}\), ta sử dụng công thức lãi kép theo định kì để tính tổng số tiền thu được \(A = P{\left( {1 + \frac{r}{n}} \right)^t}\); trong đó \(P\) là số tiền vốn ban đầu, \(r\) là lãi suất năm ( \(r\) cho dưới dạng số thập phân), \(n\) là số kì tính lãi trong một năm và \(t\) là số kì gửi.

a) Tą có: \(P = 120,r = 6{\rm{\% }} = 0,06,n = 4,t = 20\). Thay vào công thức trên, ta được:

\(A = 120{\left( {1 + \frac{{0,06}}{4}} \right)^{20}} = 120.1,{015^{20}} \approx 161,623{\rm{\;\;}}\)(triệu đồng)

b) Ta có: \(P = 120,r = 6{\rm{\% }} = 0,06,n = 12,t = 60\). Thay vào công thức trên, ta được:

\(A = 120{\left( {1 + \frac{{0,06}}{{12}}} \right)^{60}} = 120.1,{005^{60}} \approx 161,862{\rm{\;}}\)(triệu đồng)

c) Ta sử dụng công thức lãi kép liên tục \(A = P{e^{rt}}\), ở đây \(r\) là lãi suất năm ( \(r\) cho dưới dạng số thập phân) và \(t\) là số năm gửi tiết kiệm.

Ta có: \(P = 120,r = 6{\rm{\% }} = 0,06,t = 5\) nên \(A = 120 \cdot {e^{0,06 - 5}} = 120 \cdot {e^{0,3}} \approx 161,983\) (triệu đồng)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 6.28 trang 15 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng học toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 6.28 trang 15 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 6.28 thuộc chương trình Toán 11, sách Kết nối tri thức với cuộc sống, tập trung vào việc vận dụng kiến thức về vectơ để giải quyết các bài toán hình học. Để giải bài này, học sinh cần nắm vững các khái niệm cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng và ứng dụng để xác định góc giữa hai vectơ, kiểm tra tính vuông góc.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ và thực hiện các phép toán vectơ bằng tọa độ.

Phân tích bài toán 6.28

Bài 6.28 thường yêu cầu học sinh thực hiện các thao tác sau:

  1. Xác định các vectơ liên quan đến bài toán.
  2. Biểu diễn các vectơ theo các vectơ cơ sở (nếu có).
  3. Sử dụng các phép toán vectơ để tìm các đại lượng cần tính (ví dụ: độ dài đoạn thẳng, góc giữa hai đường thẳng).
  4. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Lời giải chi tiết bài 6.28 trang 15

Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài toán 6.28. Giả sử bài toán yêu cầu tính độ dài của một đoạn thẳng trong hình học phẳng, ta có thể thực hiện như sau:

Ví dụ: Cho tam giác ABC, với A(xA, yA), B(xB, yB), C(xC, yC). Tính độ dài cạnh BC.

Lời giải:

Vectơ BC được xác định bởi:

BC = (xC - xB, yC - yB)

Độ dài cạnh BC được tính bằng công thức:

|BC| = √((xC - xB)2 + (yC - yB)2)

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài 6.28, còn rất nhiều bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức. Các bài tập này thường yêu cầu học sinh:

  • Chứng minh đẳng thức vectơ.
  • Tìm tọa độ của một điểm khi biết tọa độ của các điểm khác và các mối quan hệ vectơ.
  • Giải bài toán về hình học phẳng và không gian bằng phương pháp vectơ.

Để giải các bài tập này, học sinh cần:

  • Nắm vững các định nghĩa, tính chất và công thức liên quan đến vectơ.
  • Rèn luyện kỹ năng biến đổi và sử dụng các phép toán vectơ.
  • Áp dụng kiến thức vectơ vào giải quyết các bài toán hình học cụ thể.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, học sinh nên luyện tập thêm các bài tập khác trong sách bài tập và các tài liệu tham khảo khác. Giaitoan.edu.vn cung cấp nhiều bài tập luyện tập và lời giải chi tiết, giúp các em học sinh tự tin hơn trong quá trình học tập.

Kết luận

Bài 6.28 trang 15 Sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng giải toán về vectơ. Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11