Logo Header
  1. Môn Toán
  2. Giải bài 3.6 trang 50 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 3.6 trang 50 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 3.6 trang 50 Sách bài tập Toán 11 - Kết nối tri thức

Bài 3.6 trang 50 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.6 trang 50, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:

Đề bài

Quãng đường (km) các cầu thủ (không tính thủ môn) chạy trong một trận đấu bóng đá tại giải ngoại hạng Anh được cho trong bảng thống sau:

Giải bài 3.6 trang 50 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Tìm trung vị của mẫu số liệu này và giải thích ý nghĩa của giá trị thu được.

Phương pháp giải - Xem chi tiếtGiải bài 3.6 trang 50 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 2

Ta có bảng số liệu ghép nhóm:

Giải bài 3.6 trang 50 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 3

Để tính trung vị \({M_e}\) của mẫu số liệu ghép nhóm ta làm như sau:

Bước 1: Xác định nhóm chứa trung vị. Giả sử đó là nhóm thứ j: \(\left[ {{a_j};{a_{j + 1}}} \right)\)

Bước 2: Trung vị là: \({M_e} = {a_j} + \frac{{\frac{n}{2} - \left( {{m_1} + ... + {m_{j - 1}}} \right)}}{{{m_j}}}\left( {{a_{j + 1}} - {a_j}} \right)\)

Trong đó, n là cỡ mẫu. Với \(j = 1\) ta quy ước \({m_1} + ... + {m_{j - 1}} = 0\). Trung vị chính là tứ phân vị thứ hai \({Q_2}.\) Trung vị của mẫu số liệu ghép nhóm xấp xỉ cho trung vị của mẫu số liệu gốc, nó chia mẫu số liệu thành 2 phần, mỗi phần chứa 50% giá trị.

Lời giải chi tiết

Cỡ mẫu \(n = 2 + 5 + 6 + 9 + 3 = 25\). Nhóm chứa trung vị là \(\left[ {6;8} \right)\). Trung vị là:

\({M_e} = 6 + \frac{{\frac{{25}}{2} - \left( {2 + 5} \right)}}{6}\left( {8 - 6} \right) \approx 7,83\)

Có 50% số cầu thủ chạy nhiều hơn 7,83km và có 50% số cầu thủ chạy ít hơn 7,83km.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 3.6 trang 50 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng toán math. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 3.6 trang 50 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 3.6 trang 50 sách bài tập Toán 11 - Kết nối tri thức thuộc chương trình học về vectơ trong không gian. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính tích vô hướng, ứng dụng của tích vô hướng trong việc xác định góc giữa hai vectơ, tính độ dài vectơ.
  • Hệ tọa độ trong không gian: Biểu diễn vectơ bằng tọa độ, các phép toán vectơ trong hệ tọa độ.

Nội dung bài tập 3.6 trang 50

Bài 3.6 thường bao gồm các dạng bài tập sau:

  1. Tìm tọa độ của một vectơ: Cho các điểm trong không gian, tìm tọa độ của vectơ nối hai điểm đó.
  2. Thực hiện các phép toán vectơ: Tính tổng, hiệu, tích với một số thực của các vectơ cho trước.
  3. Chứng minh đẳng thức vectơ: Sử dụng các phép toán vectơ để chứng minh một đẳng thức vectơ cho trước.
  4. Ứng dụng của tích vô hướng: Tính góc giữa hai vectơ, kiểm tra tính vuông góc của hai vectơ.
  5. Bài toán liên quan đến hình học: Sử dụng vectơ để giải các bài toán về hình học phẳng và không gian.

Lời giải chi tiết bài 3.6 trang 50

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 3.6 trang 50, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Nội dung giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng, và giải thích rõ ràng từng bước. Ví dụ:)

Ví dụ: Cho A(1; 2; 3) và B(4; 5; 6). Tìm tọa độ của vectơ AB.

Giải:

Tọa độ của vectơ AB được tính bằng công thức: AB = B - A = (4 - 1; 5 - 2; 6 - 3) = (3; 3; 3).

Mẹo giải bài tập vectơ hiệu quả

Để giải các bài tập về vectơ một cách hiệu quả, các em học sinh nên:

  • Nắm vững định nghĩa và các phép toán vectơ.
  • Luyện tập thường xuyên các bài tập về vectơ.
  • Sử dụng sơ đồ hình học để minh họa các vectơ và các phép toán vectơ.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, các em học sinh có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán online: Giaitoan.edu.vn, Vietjack.com, Loigiaihay.com,...
  • Các video bài giảng về vectơ trên Youtube.
  • Các diễn đàn học toán.

Kết luận

Bài 3.6 trang 50 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về vectơ và rèn luyện kỹ năng giải bài tập. Hy vọng với lời giải chi tiết và các mẹo giải bài tập mà Giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập môn Toán.

Tài liệu, đề thi và đáp án Toán 11