Logo Header
  1. Môn Toán
  2. Giải bài 7.34 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.34 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Giải bài 7.34 trang 41 Sách bài tập Toán 11 - Kết nối tri thức

Bài 7.34 trang 41 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết các bài toán cụ thể.

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.34 trang 41, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.

Cho khối chóp đều (S.ABCD) có đáy (ABCD) là hình vuông cạnh bằng (a)

Đề bài

Cho khối chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a\), góc giữa mặt phẳng \(\left( {SCD} \right)\) và mặt phẳng \(\left( {ABCD} \right)\) bằng \(60^\circ \). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).

Phương pháp giải - Xem chi tiếtGiải bài 7.34 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 1

Áp dụng công thức tính thể tích khối chóp: \(S = \frac{1}{3}Bh\).

Trong đó: \(B\) là diện tích đa giác đáy

\(h\)là đường cao của hình chóp

Bước 1: Xác định chiều cao \(SO\)

Bước 2: Tính diện tích đáy

Bước 3: Tính thể tích khối chóp \(V = \frac{1}{3}SO.{S_{ABCD}}\).

Lời giải chi tiết

Giải bài 7.34 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống 2

Gọi \(O\) là giao điểm của \(AC\) và \(BD\), ta có \(SO\) vuông góc với mặt đáy \(\left( {ABCD} \right)\). Kẻ \(OM\) vuông góc với \(CD\) tại \(M\) thì \(SM\) cũng vuông góc với \(CD\) nên góc giữa hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {ABCD} \right)\) bằng góc giữa hai đường thẳng \(SM\) và \(OM\), mà \(\left( {SM,OM} \right) = \widehat {SMO} = 60^\circ \). Ta có: \(OM = \frac{a}{2};\)\(SO = OM \cdot {\rm{tan}}\widehat {SMO} = \frac{{a\sqrt 3 }}{2}\). Vậy \({V_{S.ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{1}{3} \cdot {a^2} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{{6}}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải bài 7.34 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng tài liệu toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải bài 7.34 trang 41 Sách bài tập Toán 11 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 7.34 trang 41 sách bài tập Toán 11 - Kết nối tri thức yêu cầu chúng ta giải quyết một bài toán liên quan đến vectơ trong không gian. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:

  • Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng, được xác định bởi điểm gốc và điểm cuối.
  • Các phép toán vectơ: Cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: a.b = |a||b|cos(θ), với θ là góc giữa hai vectơ.
  • Ứng dụng của vectơ trong hình học: Chứng minh tính chất hình học, giải bài toán về khoảng cách, diện tích, thể tích.

Phân tích bài toán 7.34 trang 41

Trước khi đi vào giải chi tiết, chúng ta cần phân tích bài toán để xác định rõ yêu cầu và các dữ kiện đã cho. Thông thường, bài toán sẽ cung cấp thông tin về các điểm trong không gian, các vectơ liên quan và yêu cầu tính toán một đại lượng nào đó, ví dụ như độ dài vectơ, góc giữa hai vectơ, tích vô hướng, hoặc chứng minh một đẳng thức vectơ.

Lời giải chi tiết bài 7.34 trang 41

(Ở đây sẽ là lời giải chi tiết của bài toán 7.34, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng. Ví dụ, nếu bài toán yêu cầu tính độ dài của vectơ AB, lời giải sẽ trình bày các bước tính toán cụ thể, sử dụng công thức tính độ dài vectơ: |AB| = sqrt((xB - xA)^2 + (yB - yA)^2 + (zB - zA)^2). Lời giải cần được trình bày một cách logic, dễ hiểu và có tính chính xác cao.)

Ví dụ minh họa

Để giúp các em hiểu rõ hơn về phương pháp giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa tương tự. Ví dụ:

Cho hai điểm A(1; 2; 3) và B(4; 5; 6). Tính độ dài của vectơ AB.

Giải:

Vectơ AB có tọa độ là: AB = (4 - 1; 5 - 2; 6 - 3) = (3; 3; 3)

Độ dài của vectơ AB là: |AB| = sqrt(3^2 + 3^2 + 3^2) = sqrt(27) = 3√3

Lưu ý khi giải bài tập về vectơ

  • Luôn vẽ hình để hình dung rõ bài toán.
  • Sử dụng đúng công thức và các phép toán vectơ.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Mở rộng kiến thức

Ngoài bài 7.34, các em có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức để củng cố kiến thức và rèn luyện kỹ năng giải toán. Các em cũng có thể tìm kiếm các tài liệu học tập trực tuyến, các video hướng dẫn giải toán trên YouTube, hoặc tham gia các diễn đàn học tập để trao đổi kiến thức và kinh nghiệm với các bạn học sinh khác.

Tổng kết

Bài 7.34 trang 41 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp các em hiểu sâu hơn về vectơ và ứng dụng của vectơ trong hình học. Hy vọng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin giải quyết bài toán này và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 11