Bài 8.12 trang 51 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.12 trang 51, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Gieo hai con xúc xắc cân đối. Xét biến cố \(A\): “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm”
Đề bài
Gieo hai con xúc xắc cân đối. Xét biến cố \(A\): “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm”, \(B\): “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”. Chứng tỏ rằng \(A\) và \(B\) không độc lập.
Phương pháp giải - Xem chi tiết
Tính \(P(A),P(B),P(AB)\)
\(P\left( {AB} \right) = P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) độc lập với nhau
\(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\) suy ra hai biến cố \(A\) và \(B\) không độc lập với nhau
Lời giải chi tiết
Tính \(P\left( A \right)\)
Xét biến cố đối \(\overline A :\) “ Cả hai con xúc xắc không xuất hiện mặt 5 chấm”,\(\overline A = \left\{ {\left( {a,b} \right):a,b \in \left\{ {1;2;3;4;6} \right\}} \right\}\). Ta có \(n\left( {\overline A } \right) = 25\); \(n\left( \Omega \right) = 36\).
Vậy \(P\left( {\overline A } \right) = \frac{{25}}{{36}}\), do đó \(P\left( A \right) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).
Vậy \(P\left( A \right) = \frac{1}{4}\).
Tính \(P\left( B \right)\), Ta có \(B = \left\{ {\left( {1,6} \right);\left( {2,5} \right);\left( {3,4} \right);\left( {4,3} \right);\left( {5,2} \right);\left( {6,1} \right)} \right\}\), \(n\left( B \right) = 6\).
Vậy \(P\left( B \right) = \frac{6}{{36}}\).
Tính \(P\left( {AB} \right)\), Ta có \(AB = A \cap B = \left\{ {\left( {2,5} \right);\left( {5,2} \right)} \right\}\), \(n\left( {A \cap B} \right) = 2\).
Vậy \(P\left( {AB} \right) = \frac{2}{{36}}\).
Ta có \(P\left( {AB} \right) = \frac{2}{{36}} = \frac{{72}}{{{{36}^2}}};P\left( A \right).P\left( B \right) = \frac{{11}}{{36}}.\frac{6}{{36}} = \frac{{66}}{{{{36}^2}}}\).
Suy ra: \(P\left( {AB} \right) \ne P\left( A \right).P\left( B \right)\).
Vậy \(A\) và \(B\) không độc lập.
Bài 8.12 trang 51 sách bài tập Toán 11 - Kết nối tri thức thuộc chương 3: Đường thẳng và mặt phẳng trong không gian. Bài toán này thường yêu cầu học sinh xác định mối quan hệ giữa đường thẳng và mặt phẳng, sử dụng các định lý và tính chất đã học để chứng minh hoặc tính toán.
Trước khi bắt đầu giải bài tập, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các dữ kiện đã cho. Đồng thời, cần nhớ lại các kiến thức liên quan như:
(Nội dung lời giải chi tiết bài 8.12 trang 51 sẽ được trình bày tại đây. Bao gồm các bước giải, hình vẽ minh họa (nếu có) và giải thích rõ ràng từng bước. Ví dụ:)
Ví dụ: Giả sử đề bài yêu cầu chứng minh đường thẳng d vuông góc với mặt phẳng (P). Lời giải có thể như sau:
Ngoài bài 8.12, còn rất nhiều bài tập tương tự trong sách bài tập Toán 11 - Kết nối tri thức. Để giải quyết các bài tập này, bạn có thể áp dụng các phương pháp sau:
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, bạn có thể thử giải các bài tập sau:
Khi giải bài tập về đường thẳng và mặt phẳng, bạn cần lưu ý những điều sau:
Bài 8.12 trang 51 sách bài tập Toán 11 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu rõ về mối quan hệ giữa đường thẳng và mặt phẳng trong không gian. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải bài tập và đạt kết quả tốt trong môn Toán.