Bài 4.16 trang 59 sách bài tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về vectơ và ứng dụng trong hình học. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về tích vô hướng của hai vectơ để giải quyết các bài toán liên quan đến góc giữa hai vectơ, độ dài vectơ và các tính chất hình học khác.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 4.16 trang 59, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
Đề bài
Cho tứ diện ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Xác định giao tuyến của hai mặt phẳng (ANP) và (CMQ).
b) Xác định giao tuyến của hai mặt phẳng (ANP) và (ABD).
c) Xác định giao tuyến của hai mặt phẳng (CMQ) và (BCD).
d) Chứng minh rằng các giao tuyến ở trên đôi một song song với nhau.
Phương pháp giải - Xem chi tiết
Dựa vào định lý về 3 đường giao tuyến của 3 mặt phẳng: Nếu có 2 giao tuyến của song song với nhau thì giao tuyến thứ 3 cũng song song với 2 giao tuyến đó. Còn nếu có 2 giao tuyến cắt nhau thì 3 giao tuyến đó đồng quy.
Lời giải chi tiết
a) M, Q lần lượt là trung điểm của các cạnh AB, DA nên MQ là đường trung bình tam giác ABD nên MQ//BD.
N, P lần lượt là trung điểm của các cạnh BC, CD nên NP là đường trung bình tam giác CBD nên NP//BD.
Vậy MQ//NP, suy ra M, N, P, Q đồng phẳng.
Xét 3 mặt phẳng (MNPQ), (ANP) và (CMQ).
MQ là giao tuyến của (MNPQ) và (CMQ).
NP là giao tuyến của (MNPQ) và (ANP).
Vậy giao tuyến của (ANP) và (CMQ) cũng là một đường thẳng song song với MQ và NP.
Trong mặt phẳng (ABC), gọi E là giao điểm của AN và MC. Trong mặt phẳng (ACD) gọi F là giao điểm của CQ và AP. Vậy EF là giao tuyến của hai mặt phẳng (ANP) và (CMQ).
b)
Xét 3 mặt phẳng (BCD), (ANP) và (ABD).
BD là giao tuyến của (BCD) và (ABD).
NP là giao tuyến của (BCD) và (ANP).
Mà theo chứng minh trên, BD//NP.
Vậy giao tuyến của (ANP) và (ABD) cũng là một đường thẳng song song với BD và NP.
Mà A là điểm chung của hai mặt phẳng (ANP) và (ABD) , vậy giao tuyến của hai mặt phẳng đó là đường thẳng đi qua A và song song với BD.
c)
Xét 3 mặt phẳng (BCD), (ABD) và (CMQ).
MQ là giao tuyến của (ABD) và (CMQ).
BD là giao tuyến của (BCD) và (ABD).
Mà MQ//BD nên giao tuyến của mặt phẳng (CMQ) và (BCD) cũng là một đường thẳng song song với MQ và BD.
Ta thấy C là một điểm chung của mặt phẳng (CMQ) và (BCD), vậy giao tuyến của hai mặt phẳng (CMQ) và (BCD) là đường thẳng đi qua C và song song với BD.
d) Theo chứng minh trên, các đường giao tuyến đều song song với MQ, NP, BD nên chúng song song với nhau.
Bài 4.16 trang 59 sách bài tập Toán 11 Kết nối tri thức yêu cầu học sinh giải quyết một bài toán liên quan đến vectơ và ứng dụng trong hình học. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về vectơ, tích vô hướng và các tính chất hình học liên quan.
Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, bài toán sẽ cung cấp thông tin về các vectơ, các điểm trong hình học và yêu cầu tính toán một đại lượng nào đó (ví dụ: góc, độ dài, diện tích).
(Ở đây sẽ là lời giải chi tiết của bài toán 4.16, bao gồm các bước giải, công thức sử dụng và kết quả cuối cùng. Lời giải sẽ được trình bày một cách rõ ràng, dễ hiểu, có thể kèm theo hình vẽ minh họa nếu cần thiết.)
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ xem xét một số ví dụ minh họa và bài tập tương tự. Các ví dụ này sẽ giúp các em rèn luyện kỹ năng và tự tin giải các bài tập khác.
Ví dụ 1: Cho hai vectơ a = (1; 2) và b = (-3; 4). Tính tích vô hướng của hai vectơ này và xác định góc giữa chúng.
Bài tập tương tự 1: Cho tam giác ABC có A(1; 2), B(3; 4), C(5; 6). Tính độ dài các cạnh của tam giác và xác định loại tam giác này.
Ngoài việc giải bài tập 4.16 trang 59, các em học sinh có thể tìm hiểu thêm về các ứng dụng khác của vectơ trong hình học và vật lý. Ví dụ, vectơ có thể được sử dụng để biểu diễn lực, vận tốc, gia tốc trong vật lý.
Hy vọng rằng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài 4.16 trang 59 sách bài tập Toán 11 Kết nối tri thức và tự tin hơn trong quá trình học tập môn Toán.
Công thức | Mô tả |
---|---|
a.b = |a||b|cos(θ) | Tích vô hướng của hai vectơ |
|a| = √(x2 + y2) | Độ dài của vectơ a = (x; y) |
cos(θ) = (a.b) / (|a||b|) | Tính góc giữa hai vectơ |