Bài 7.24 trang 38 SGK Toán 7 tập 2 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng các kiến thức về tam giác cân đã học. Bài tập này thường yêu cầu học sinh chứng minh một tính chất hoặc giải một bài toán liên quan đến tam giác cân.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 7.24 trang 38 SGK Toán 7 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Rút gọn các biểu thức sau:
Đề bài
Rút gọn các biểu thức sau:
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
b) \(\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\)
Phương pháp giải - Xem chi tiết
Bước 1: Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.
Bước 2: Trừ các đa thức thu được
Lời giải chi tiết
a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)
= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]
= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)
= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3
= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x
= -8x4 + 5x3 + 24x2 – 6x
\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)
Bài 7.24 SGK Toán 7 tập 2 Kết nối tri thức yêu cầu học sinh chứng minh một tính chất liên quan đến tam giác cân. Để giải bài này, chúng ta cần nắm vững các kiến thức cơ bản về tam giác cân, bao gồm định nghĩa, tính chất và các dấu hiệu nhận biết tam giác cân.
Trước khi đi vào giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, bài toán sẽ cho một hình vẽ hoặc một giả thiết nào đó liên quan đến tam giác. Nhiệm vụ của chúng ta là sử dụng các kiến thức đã học để chứng minh một kết luận nào đó.
(Ở đây sẽ là lời giải chi tiết của bài toán, bao gồm các bước chứng minh, giải thích rõ ràng và dễ hiểu. Lời giải sẽ được trình bày theo từng bước, sử dụng các ký hiệu toán học và hình vẽ minh họa nếu cần thiết.)
Ví dụ (giả sử bài toán yêu cầu chứng minh một đường thẳng là đường trung tuyến):
Ngoài bài 7.24, còn rất nhiều bài tập tương tự liên quan đến tam giác cân. Để giải các bài tập này, chúng ta có thể áp dụng các phương pháp sau:
Để củng cố kiến thức, các em có thể tự giải các bài tập sau:
Bài 7.24 trang 38 SGK Toán 7 tập 2 là một bài tập quan trọng giúp học sinh hiểu sâu hơn về tam giác cân. Hy vọng với lời giải chi tiết và các phương pháp giải bài tập đã trình bày, các em học sinh sẽ tự tin hơn khi giải các bài tập tương tự. Chúc các em học tốt!