Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài tập mục 2 trang 12, 13 sách giáo khoa Toán 7 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi cung cấp đáp án chính xác, dễ hiểu, kèm theo các bước giải cụ thể, giúp các em học sinh có thể tự học tại nhà hoặc ôn tập kiến thức một cách hiệu quả.
Viết các hỗn số và số thập phân trong các phép tính sau dưới dạng phân số rồi thực hiện phép tính:...Tính: ...Tính một cách hợp lí:
Có hai tấm ảnh kích thước 10 cm \( \times \) 15 cm được in trên giấy ảnh kích thước 21,6 cm \( \times \)27,9 cm như Hình 1.8. Nếu cắt ảnh theo đúng kích thước thì diện tích phần giấy ảnh còn lại bao nhiêu?
Phương pháp giải:
Tính diện tích từng tấm ảnh và diện tích tờ giấy
Diện tích phần giấy ảnh còn lại = Diện tích tờ giấy – diện tích 2 tấm ảnh
Diện tích hình chữ nhật = Chiều dài . Chiều rộng
Lời giải chi tiết:
Diện tích 1 tấm ảnh là:
10.15 = 150 (cm2)
Diện tích tấm giấy là:
21,6 . 27,9 = 602,64 (cm2)
Diện tích phần giấy ảnh còn lại là:
602,64 – 2.150 = 302,64 (cm2)
Đáp số: 302, 64 cm2
Tính một cách hợp lí: \(\frac{7}{6}.3\frac{1}{4} + \frac{7}{6}.( - 0,25).\)
Phương pháp giải:
Viết số thập phân, hỗn số dưới dạng phân số
Sử dụng tính chất phân phối giữa phép nhân và phép cộng (a.b+a.c = a.(b+c)
Lời giải chi tiết:
\(\begin{array}{l}\frac{7}{6}.3\frac{1}{4} + \frac{7}{6}.( - 0,25)\\ = \frac{7}{6}.\frac{{13}}{4} + \frac{7}{6}.\frac{{ - 25}}{{100}}\\ = \frac{7}{6}.\frac{{13}}{4} + \frac{7}{6}.\frac{{ - 1}}{4}\\ = \frac{7}{6}.[\left( {\frac{{13}}{4} + ( - \frac{1}{4})} \right)]\\ = \frac{7}{6}.\frac{{12}}{4}\\ = \frac{7}{6}.3\\ = \frac{7}{2}\end{array}\)
Viết các hỗn số và số thập phân trong các phép tính sau dưới dạng phân số rồi thực hiện phép tính:
\(a)0,36.\frac{{ - 5}}{9};b)\frac{{ - 7}}{6}:1\frac{5}{7}.\)
Phương pháp giải:
Bước 1: Viết các hỗn số và số thập phân dưới dạng phân số
Bước 2: Thực hiện phép nhân, chia phân số
Muốn nhân 2 phân số, ta nhân tử với tử, mẫu với mẫu.
Muốn chia 2 phân số, ta nhân phân số thứ nhất với phân số nghịch đảo của phân số thứ 2.
Lời giải chi tiết:
\(\begin{array}{l}a)0,36.\frac{{ - 5}}{9}\\ = \frac{{36}}{{100}}.\frac{{ - 5}}{9}\\ = \frac{9}{{25}}.\frac{{ - 5}}{9}\\ = \frac{{ - 1}}{5}\\b)\frac{{ - 7}}{6}:1\frac{5}{7}\\ = \frac{{ - 7}}{6}:\frac{{12}}{7}\\ = \frac{{ - 7}}{6}.\frac{7}{{12}}\\ = \frac{{ - 49}}{{72}}\end{array}\)
Chú ý: Khi tính toán, nếu phân số chưa ở dạng tối giản thì ta nên rút gọn về dạng tối giản để tính toán thuận tiện hơn.
Tính: \(a)\left( { - \frac{9}{{13}}} \right).\left( { - \frac{4}{5}} \right);b) - 0,7:\frac{3}{2}\)
Phương pháp giải:
+) Viết số thập phân dưới dạng phân số
+) Thực hiện phép nhân, chia phân số
Muốn nhân 2 phân số, ta nhân tử với tử, mẫu với mẫu.
Muốn chia 2 phân số, ta nhân phân số thứ nhất với phân số nghịch đảo của phân số thứ 2.
Lời giải chi tiết:
\(\begin{array}{l}a)\left( { - \frac{9}{{13}}} \right).\left( { - \frac{4}{5}} \right)\\ = \frac{9}{{13}}.\frac{4}{5}\\ = \frac{{36}}{{65}}\\b) - 0,7:\frac{3}{2}\\ = \frac{{ - 7}}{{10}}.\frac{2}{3}\\ = \frac{{ - 7}}{{15}}\end{array}\)
Chú ý: Tích của 2 số hữu tỉ cùng dấu là 1 số hữu tỉ dương.
Tích của 2 số hữu tỉ trái dấu là 1 số hữu tỉ âm.
Viết các hỗn số và số thập phân trong các phép tính sau dưới dạng phân số rồi thực hiện phép tính:
\(a)0,36.\frac{{ - 5}}{9};b)\frac{{ - 7}}{6}:1\frac{5}{7}.\)
Phương pháp giải:
Bước 1: Viết các hỗn số và số thập phân dưới dạng phân số
Bước 2: Thực hiện phép nhân, chia phân số
Muốn nhân 2 phân số, ta nhân tử với tử, mẫu với mẫu.
Muốn chia 2 phân số, ta nhân phân số thứ nhất với phân số nghịch đảo của phân số thứ 2.
Lời giải chi tiết:
\(\begin{array}{l}a)0,36.\frac{{ - 5}}{9}\\ = \frac{{36}}{{100}}.\frac{{ - 5}}{9}\\ = \frac{9}{{25}}.\frac{{ - 5}}{9}\\ = \frac{{ - 1}}{5}\\b)\frac{{ - 7}}{6}:1\frac{5}{7}\\ = \frac{{ - 7}}{6}:\frac{{12}}{7}\\ = \frac{{ - 7}}{6}.\frac{7}{{12}}\\ = \frac{{ - 49}}{{72}}\end{array}\)
Chú ý: Khi tính toán, nếu phân số chưa ở dạng tối giản thì ta nên rút gọn về dạng tối giản để tính toán thuận tiện hơn.
Tính: \(a)\left( { - \frac{9}{{13}}} \right).\left( { - \frac{4}{5}} \right);b) - 0,7:\frac{3}{2}\)
Phương pháp giải:
+) Viết số thập phân dưới dạng phân số
+) Thực hiện phép nhân, chia phân số
Muốn nhân 2 phân số, ta nhân tử với tử, mẫu với mẫu.
Muốn chia 2 phân số, ta nhân phân số thứ nhất với phân số nghịch đảo của phân số thứ 2.
Lời giải chi tiết:
\(\begin{array}{l}a)\left( { - \frac{9}{{13}}} \right).\left( { - \frac{4}{5}} \right)\\ = \frac{9}{{13}}.\frac{4}{5}\\ = \frac{{36}}{{65}}\\b) - 0,7:\frac{3}{2}\\ = \frac{{ - 7}}{{10}}.\frac{2}{3}\\ = \frac{{ - 7}}{{15}}\end{array}\)
Chú ý: Tích của 2 số hữu tỉ cùng dấu là 1 số hữu tỉ dương.
Tích của 2 số hữu tỉ trái dấu là 1 số hữu tỉ âm.
Tính một cách hợp lí: \(\frac{7}{6}.3\frac{1}{4} + \frac{7}{6}.( - 0,25).\)
Phương pháp giải:
Viết số thập phân, hỗn số dưới dạng phân số
Sử dụng tính chất phân phối giữa phép nhân và phép cộng (a.b+a.c = a.(b+c)
Lời giải chi tiết:
\(\begin{array}{l}\frac{7}{6}.3\frac{1}{4} + \frac{7}{6}.( - 0,25)\\ = \frac{7}{6}.\frac{{13}}{4} + \frac{7}{6}.\frac{{ - 25}}{{100}}\\ = \frac{7}{6}.\frac{{13}}{4} + \frac{7}{6}.\frac{{ - 1}}{4}\\ = \frac{7}{6}.[\left( {\frac{{13}}{4} + ( - \frac{1}{4})} \right)]\\ = \frac{7}{6}.\frac{{12}}{4}\\ = \frac{7}{6}.3\\ = \frac{7}{2}\end{array}\)
Có hai tấm ảnh kích thước 10 cm \( \times \) 15 cm được in trên giấy ảnh kích thước 21,6 cm \( \times \)27,9 cm như Hình 1.8. Nếu cắt ảnh theo đúng kích thước thì diện tích phần giấy ảnh còn lại bao nhiêu?
Phương pháp giải:
Tính diện tích từng tấm ảnh và diện tích tờ giấy
Diện tích phần giấy ảnh còn lại = Diện tích tờ giấy – diện tích 2 tấm ảnh
Diện tích hình chữ nhật = Chiều dài . Chiều rộng
Lời giải chi tiết:
Diện tích 1 tấm ảnh là:
10.15 = 150 (cm2)
Diện tích tấm giấy là:
21,6 . 27,9 = 602,64 (cm2)
Diện tích phần giấy ảnh còn lại là:
602,64 – 2.150 = 302,64 (cm2)
Đáp số: 302, 64 cm2
Mục 2 trong SGK Toán 7 tập 1 - Kết nối tri thức tập trung vào các khái niệm cơ bản về số tự nhiên, số nguyên, và các phép toán trên chúng. Việc nắm vững kiến thức này là nền tảng quan trọng cho việc học toán ở các lớp trên. Bài viết này sẽ đi sâu vào từng bài tập trong mục 2 trang 12, 13, cung cấp lời giải chi tiết và dễ hiểu.
Bài tập 1 yêu cầu học sinh thực hiện các phép tính cộng, trừ, nhân, chia số tự nhiên. Để giải bài tập này, học sinh cần nắm vững thứ tự thực hiện các phép toán và các quy tắc về dấu của số tự nhiên.
Bài tập 2 yêu cầu học sinh so sánh các số tự nhiên. Để so sánh các số tự nhiên, học sinh cần dựa vào giá trị của chúng. Số nào có giá trị lớn hơn thì lớn hơn.
Bài tập 3 yêu cầu học sinh tìm số tự nhiên x thỏa mãn một điều kiện cho trước. Để giải bài tập này, học sinh cần sử dụng các phép toán và các quy tắc về số tự nhiên để tìm ra giá trị của x.
Ví dụ: Tìm x biết x + 5 = 12. Ta có x = 12 - 5 = 7.
Bài tập 4 thường liên quan đến việc ứng dụng các kiến thức đã học vào giải quyết các bài toán thực tế. Học sinh cần đọc kỹ đề bài, xác định các thông tin quan trọng và sử dụng các phép toán phù hợp để giải quyết bài toán.
Việc giải bài tập Toán 7 không chỉ giúp học sinh nắm vững kiến thức mà còn rèn luyện kỹ năng tư duy logic, khả năng giải quyết vấn đề và sự kiên trì. Đây là những kỹ năng quan trọng không chỉ trong học tập mà còn trong cuộc sống.
Giaitoan.edu.vn là một website học toán online uy tín, cung cấp lời giải chi tiết, dễ hiểu cho các bài tập trong SGK Toán 7 tập 1 - Kết nối tri thức và các chương trình toán khác. Chúng tôi hy vọng rằng website sẽ là một công cụ hữu ích giúp các em học sinh học toán hiệu quả hơn.
Bài tập | Nội dung |
---|---|
Bài 1 | Thực hiện các phép tính cộng, trừ, nhân, chia số tự nhiên |
Bài 2 | So sánh các số tự nhiên |
Bài 3 | Tìm số tự nhiên x thỏa mãn một điều kiện cho trước |
Bài 4 | Ứng dụng kiến thức vào giải quyết bài toán thực tế |
Hy vọng với những giải thích chi tiết trên, các em học sinh sẽ tự tin hơn khi giải các bài tập trong mục 2 trang 12, 13 SGK Toán 7 tập 1 - Kết nối tri thức. Chúc các em học tốt!