Bài 8.7 trang 55 SGK Toán 7 tập 2 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đơn giản với đa thức. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để thực hiện các phép tính cộng, trừ, nhân, chia đa thức một cách chính xác.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 8.7 trang 55 SGK Toán 7 tập 2, giúp các em học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Gieo một con xúc xắc được chế tạo cân đối. Tìm xác suất của các biến cố sau: A: “ Số chấm xuất hiện trên con xúc xắc nhỏ hơn 7” B: “ Số chấm xuất hiện trên con xúc xắc là 0” C: “ Số chấm xuất hiện trên con xúc xắc là 6”
Đề bài
Gieo một con xúc xắc được chế tạo cân đối. Tìm xác suất của các biến cố sau:
A: “ Số chấm xuất hiện trên con xúc xắc nhỏ hơn 7”
B: “ Số chấm xuất hiện trên con xúc xắc là 0”
C: “ Số chấm xuất hiện trên con xúc xắc là 6”
Phương pháp giải - Xem chi tiết
Biến cố chắc chắn: Là biến cố biết trước được luôn xảy ra. Biến cố chắc chắn có xác suất bằng 1.
Biến cố không thể: Là biến cố biết trước được không bao giờ xảy ra. Biến cố không thể có xác suất bằng 0.
Biến cố ngẫu nhiên: Có k biến cố đồng khả năng và luôn xảy ra 1 trong k biến cố này thì xác suất của mỗi biến cố đó là \(\dfrac{1}{k}\)
Lời giải chi tiết
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
Do có 6 biến cố đồng khả năng và luôn xảy ra 1 trong 6 biến cố đó là: “ Xuất hiện 1 chấm”; “ Xuất hiện 2 chấm”; “ Xuất hiện 3 chấm”; “ Xuất hiện 4 chấm”; “ Xuất hiện 5 chấm”;“ Xuất hiện 6 chấm”
Xác suất của mỗi biến cố đó là \(\dfrac{1}{6}\)
Vậy xác suất để số chấm xuất hiện trên con xúc xắc là 6 là \(\dfrac{1}{6}\)
Bài 8.7 trang 55 SGK Toán 7 tập 2 yêu cầu chúng ta thực hiện các phép tính với đa thức. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các quy tắc về cộng, trừ, nhân, chia đa thức. Dưới đây là hướng dẫn chi tiết từng bước để giải bài tập này:
Đề bài yêu cầu thực hiện các phép tính sau:
a) (3x + 5)(x - 2)
Để nhân hai đa thức, ta áp dụng quy tắc phân phối:
(3x + 5)(x - 2) = 3x(x - 2) + 5(x - 2) = 3x2 - 6x + 5x - 10 = 3x2 - x - 10
b) (x - 1)(x2 + x + 1)
Đây là một trường hợp đặc biệt của hằng đẳng thức (a - b)(a2 + ab + b2) = a3 - b3. Trong trường hợp này, a = x và b = 1. Do đó:
(x - 1)(x2 + x + 1) = x3 - 13 = x3 - 1
c) (2x - 3)(x2 - 5x + 2)
Áp dụng quy tắc phân phối:
(2x - 3)(x2 - 5x + 2) = 2x(x2 - 5x + 2) - 3(x2 - 5x + 2) = 2x3 - 10x2 + 4x - 3x2 + 15x - 6 = 2x3 - 13x2 + 19x - 6
Vậy, kết quả của các phép tính là:
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Bài 8.7 trang 55 SGK Toán 7 tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về các phép biến đổi đơn giản với đa thức. Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ phương pháp giải và tự tin làm bài tập. Chúc các em học tốt!