Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 7 tập 2 - Kết nối tri thức. Mục 2 trang 53, 54 là một phần quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về các khái niệm và kỹ năng đã được học.
Chúng tôi hiểu rằng việc tự giải bài tập đôi khi gặp khó khăn, vì vậy chúng tôi đã biên soạn bộ giải đáp này để giúp bạn tự tin hơn trong quá trình học tập. Hãy cùng khám phá lời giải chi tiết và các phương pháp giải bài tập hiệu quả ngay sau đây.
Gieo đồng thời hai con xúc xắc. Tìm xác suất của các biến cố sau: Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn 13 Tổng số chấm xuất hiện trên hai con xúc xắc bằng 1.
Gieo đồng thời hai con xúc xắc. Tìm xác suất của các biến cố sau:
Phương pháp giải:
Biến cố chắc chắn: Là biến cố biết trước được luôn xảy ra. Biến cố chắc chắn có xác suất bằng 1.
Biến cố không thể: Là biến cố biết trước được không bao giờ xảy ra. Biến cố không thể có xác suất bằng 0.
Lời giải chi tiết:
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
Cho trò chơi Ô cửa bí mật, có ba ô cửa 1,2,3 và người ta đặt phần thưởng sau một ô cửa. Người chơi sẽ chọ ngẫu nhiên một ô cửa trong ba ô cửa và nhận phần thưởng sau ô cửa đó. Tìm xác suất để người chơi chọn được ô cửa có phần thưởng
Phương pháp giải:
Có k biến cố đồng khả năng và luôn xảy ra 1 trong k biến cố này thì xác suất của mỗi biến cố đó là \(\dfrac{1}{k}\)
Lời giải chi tiết:
Có 3 biến cố đồng khả năng và luôn xảy ra 1 trong 3 biến cố đó là: “ Ô 1 có phần thưởng” ; “ Ô 2 có phần thưởng” và “ Ô 3 có phần thưởng”. Xác suất của mỗi biến cố đó là \(\dfrac{1}{3}\)
Vậy Tìm xác suất để người chơi chọn được ô cửa có phần thưởng là \(\dfrac{1}{3}\)
Gieo một con xúc xắc được chế tạo cân đối.
Tìm xác suất để số chấm xuất hiện trên con xúc xắc là 2.
Phương pháp giải:
Có k biến cố đồng khả năng và luôn xảy ra 1 trong k biến cố này thì xác suất của mỗi biến cố đó là \(\dfrac{1}{k}\)
Lời giải chi tiết:
Có 6 biến cố đồng khả năng và luôn xảy ra 1 trong 6 biến cố đó là: “ Xuất hiện 1 chấm”; “ Xuất hiện 2 chấm”; “ Xuất hiện 3 chấm”; “ Xuất hiện 4 chấm”; “ Xuất hiện 5 chấm”;“ Xuất hiện 6 chấm”
Xác suất của mỗi biến cố đó là \(\dfrac{1}{6}\)
Vậy xác suất để số chấm xuất hiện trên con xúc xắc là 2 là \(\dfrac{1}{6}\)
2. Xác suất của một số biến cố đơn giản
Gieo đồng thời hai con xúc xắc. Tìm xác suất của các biến cố sau:
Phương pháp giải:
Biến cố chắc chắn: Là biến cố biết trước được luôn xảy ra. Biến cố chắc chắn có xác suất bằng 1.
Biến cố không thể: Là biến cố biết trước được không bao giờ xảy ra. Biến cố không thể có xác suất bằng 0.
Lời giải chi tiết:
Số chấm trên 1 con xúc xắc chỉ có thể là 1;2;3;4;5 hoặc 6
Cho trò chơi Ô cửa bí mật, có ba ô cửa 1,2,3 và người ta đặt phần thưởng sau một ô cửa. Người chơi sẽ chọ ngẫu nhiên một ô cửa trong ba ô cửa và nhận phần thưởng sau ô cửa đó. Tìm xác suất để người chơi chọn được ô cửa có phần thưởng
Phương pháp giải:
Có k biến cố đồng khả năng và luôn xảy ra 1 trong k biến cố này thì xác suất của mỗi biến cố đó là \(\dfrac{1}{k}\)
Lời giải chi tiết:
Có 3 biến cố đồng khả năng và luôn xảy ra 1 trong 3 biến cố đó là: “ Ô 1 có phần thưởng” ; “ Ô 2 có phần thưởng” và “ Ô 3 có phần thưởng”. Xác suất của mỗi biến cố đó là \(\dfrac{1}{3}\)
Vậy Tìm xác suất để người chơi chọn được ô cửa có phần thưởng là \(\dfrac{1}{3}\)
Gieo một con xúc xắc được chế tạo cân đối.
Tìm xác suất để số chấm xuất hiện trên con xúc xắc là 2.
Phương pháp giải:
Có k biến cố đồng khả năng và luôn xảy ra 1 trong k biến cố này thì xác suất của mỗi biến cố đó là \(\dfrac{1}{k}\)
Lời giải chi tiết:
Có 6 biến cố đồng khả năng và luôn xảy ra 1 trong 6 biến cố đó là: “ Xuất hiện 1 chấm”; “ Xuất hiện 2 chấm”; “ Xuất hiện 3 chấm”; “ Xuất hiện 4 chấm”; “ Xuất hiện 5 chấm”;“ Xuất hiện 6 chấm”
Xác suất của mỗi biến cố đó là \(\dfrac{1}{6}\)
Vậy xác suất để số chấm xuất hiện trên con xúc xắc là 2 là \(\dfrac{1}{6}\)
Mục 2 của chương trình Toán 7 tập 2 - Kết nối tri thức tập trung vào việc ôn tập và củng cố các kiến thức đã học trong chương. Các bài tập trong mục này thường mang tính tổng hợp, yêu cầu học sinh vận dụng linh hoạt các công thức, định lý và kỹ năng đã được học để giải quyết các vấn đề thực tế.
Bài tập này yêu cầu học sinh ôn lại các kiến thức cơ bản về số hữu tỉ, bao gồm:
Để giải các bài tập trong bài này, học sinh cần nắm vững các định nghĩa, tính chất và quy tắc thực hiện các phép toán trên số hữu tỉ.
Bài tập này yêu cầu học sinh ôn lại các kiến thức cơ bản về tỉ lệ thức, bao gồm:
Để giải các bài tập trong bài này, học sinh cần nắm vững các định nghĩa, tính chất và quy tắc giải tỉ lệ thức.
Bài tập này yêu cầu học sinh ôn lại các kiến thức cơ bản về tam giác, bao gồm:
Để giải các bài tập trong bài này, học sinh cần nắm vững các định nghĩa, tính chất và quy tắc tính toán liên quan đến tam giác.
Ví dụ 1: Tính giá trị của biểu thức A = (1/2 + 1/3) * 6/5
Giải:
A = (3/6 + 2/6) * 6/5 = 5/6 * 6/5 = 1
Ví dụ 2: Tìm x biết 2/x = 4/6
Giải:
2 * 6 = 4 * x => 12 = 4x => x = 3
Để học tốt môn Toán 7, bạn cần:
Hy vọng rằng bộ giải đáp này sẽ giúp bạn tự tin hơn trong quá trình học tập môn Toán 7 tập 2 - Kết nối tri thức. Chúc bạn học tốt và đạt kết quả cao!