Giaitoan.edu.vn xin giới thiệu lời giải chi tiết mục 1 trang 39, 40 sách giáo khoa Toán 7 tập 2 chương trình Kết nối tri thức. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi cung cấp đáp án chính xác, dễ hiểu, kèm theo các bước giải cụ thể, giúp các em học sinh có thể tự học tại nhà hoặc ôn tập kiến thức một cách hiệu quả.
Tìm thương của mỗi phép chia sau:
Tìm thương của mỗi phép chia sau:
a) 12x3 : 4x
b) (-2x4 ) : x4
c) 2x5 : 5x2
Phương pháp giải:
Bước 1: Chia 2 hệ số
Bước 2: Chia 2 lũy thừa của biến
Bước 3: Nhân 2 kết quả trên, ta được thương
Lời giải chi tiết:
a) 12x3 : 4x = (12:4) . (x3 : x) = 3.x2
b) (-2x4 ) : x4 = [(-2) : 1] . (x4 : x4) = -2
c) 2x5 : 5x2 = (2:5) . (x5 : x2) = \(\frac{2}{5}\)x3
Giả sử x \( \ne \)0. Hãy cho biết:
a) Với điều kiện nào ( của hai số mũ) thì thương hai lũy thừa của x cũng là một lũy thừa của x với số mũ nguyên dương?
b) Thương hai lũy thừa của x cùng bậc bằng bao nhiêu?
Phương pháp giải:
\({x^m}:{x^n} = {x^{m - n}}\)
Lời giải chi tiết:
a) Do \({x^m}:{x^n} = {x^{m - n}}\) nên muốn thương hai lũy thừa của x cũng là một lũy thừa của x với số mũ nguyên dương, tức là m – n > 0 thì m > n
b) Ta có: \({x^m}:{x^m} = {x^{m - m}} = {x^0} = 1\)
Vậy thương hai lũy thừa của x cùng bậc bằng 1
Thực hiện các phép chia sau:
\(\begin{array}{l}a)3{x^7}:\frac{1}{2}{x^4};\\b)( - 2x):x\\c)0,25{x^5}:( - 5{x^2})\end{array}\)
Phương pháp giải:
Bước 1: Chia 2 hệ số
Bước 2: Chia 2 lũy thừa của biến
Bước 3: Nhân 2 kết quả trên, ta được thương
Lời giải chi tiết:
\(\begin{array}{l}a)3{x^7}:\dfrac{1}{2}{x^4} = (3:\dfrac{1}{2}).({x^7}:{x^4}) = 6{x^3}\\b)( - 2x):x = [( - 2):1].(x:x) = - 2\\c)0,25{x^5}:( - 5{x^2}) = [0,25:( - 5)].({x^5}:{x^2}) = - 0,05.{x^3}\end{array}\)
1. Làm quen với phép chia đa thức
Tìm thương của mỗi phép chia sau:
a) 12x3 : 4x
b) (-2x4 ) : x4
c) 2x5 : 5x2
Phương pháp giải:
Bước 1: Chia 2 hệ số
Bước 2: Chia 2 lũy thừa của biến
Bước 3: Nhân 2 kết quả trên, ta được thương
Lời giải chi tiết:
a) 12x3 : 4x = (12:4) . (x3 : x) = 3.x2
b) (-2x4 ) : x4 = [(-2) : 1] . (x4 : x4) = -2
c) 2x5 : 5x2 = (2:5) . (x5 : x2) = \(\frac{2}{5}\)x3
Giả sử x \( \ne \)0. Hãy cho biết:
a) Với điều kiện nào ( của hai số mũ) thì thương hai lũy thừa của x cũng là một lũy thừa của x với số mũ nguyên dương?
b) Thương hai lũy thừa của x cùng bậc bằng bao nhiêu?
Phương pháp giải:
\({x^m}:{x^n} = {x^{m - n}}\)
Lời giải chi tiết:
a) Do \({x^m}:{x^n} = {x^{m - n}}\) nên muốn thương hai lũy thừa của x cũng là một lũy thừa của x với số mũ nguyên dương, tức là m – n > 0 thì m > n
b) Ta có: \({x^m}:{x^m} = {x^{m - m}} = {x^0} = 1\)
Vậy thương hai lũy thừa của x cùng bậc bằng 1
Thực hiện các phép chia sau:
\(\begin{array}{l}a)3{x^7}:\frac{1}{2}{x^4};\\b)( - 2x):x\\c)0,25{x^5}:( - 5{x^2})\end{array}\)
Phương pháp giải:
Bước 1: Chia 2 hệ số
Bước 2: Chia 2 lũy thừa của biến
Bước 3: Nhân 2 kết quả trên, ta được thương
Lời giải chi tiết:
\(\begin{array}{l}a)3{x^7}:\dfrac{1}{2}{x^4} = (3:\dfrac{1}{2}).({x^7}:{x^4}) = 6{x^3}\\b)( - 2x):x = [( - 2):1].(x:x) = - 2\\c)0,25{x^5}:( - 5{x^2}) = [0,25:( - 5)].({x^5}:{x^2}) = - 0,05.{x^3}\end{array}\)
Mục 1 trang 39, 40 SGK Toán 7 tập 2 - Kết nối tri thức tập trung vào việc ôn tập và củng cố kiến thức về các phép toán với số hữu tỉ, bao gồm cộng, trừ, nhân, chia. Đây là nền tảng quan trọng để học sinh tiếp cận các kiến thức nâng cao hơn trong chương trình Toán 7.
Mục 1 bao gồm các bài tập vận dụng các kiến thức đã học để giải quyết các bài toán thực tế. Các bài tập thường yêu cầu học sinh:
Bài 1 yêu cầu học sinh thực hiện các phép tính cộng, trừ, nhân, chia số hữu tỉ. Để giải bài tập này, học sinh cần nắm vững các quy tắc về dấu của số hữu tỉ và các phép toán với phân số.
Ví dụ:
Tính: (-1/2) + (3/4)
Giải:
(-1/2) + (3/4) = (-2/4) + (3/4) = 1/4
Bài 2 yêu cầu học sinh tìm giá trị của x thỏa mãn các phương trình hoặc bất phương trình chứa số hữu tỉ. Để giải bài tập này, học sinh cần sử dụng các phép biến đổi tương đương để đưa phương trình hoặc bất phương trình về dạng đơn giản nhất.
Ví dụ:
Tìm x biết: x + (1/3) = (5/6)
Giải:
x = (5/6) - (1/3) = (5/6) - (2/6) = 3/6 = 1/2
Bài 3 thường là các bài toán có tính ứng dụng cao, yêu cầu học sinh vận dụng kiến thức về số hữu tỉ để giải quyết các vấn đề thực tế. Ví dụ, bài toán có thể liên quan đến việc tính toán diện tích, chu vi, hoặc các đại lượng vật lý khác.
Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Việc nắm vững kiến thức về số hữu tỉ và các phép toán với số hữu tỉ là rất quan trọng đối với học sinh lớp 7. Hy vọng rằng, với lời giải chi tiết và các hướng dẫn cụ thể trong bài viết này, các em học sinh sẽ tự tin hơn khi giải các bài tập trong SGK Toán 7 tập 2 - Kết nối tri thức.