Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 7 tập 1 Kết nối tri thức. Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong SGK, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.
Mục 1 của chương trình Toán 7 tập 1 tập trung vào các kiến thức cơ bản về số tự nhiên, số nguyên, phép toán và các tính chất của chúng. Việc giải bài tập một cách chính xác và hiểu rõ bản chất là vô cùng quan trọng để xây dựng nền tảng vững chắc cho các kiến thức tiếp theo.
Nhắc lại quy tắc cộng và trừ hai phân số rồi thực hiện phép tính:...Viết các hỗn số và số thập phân trong phép tính sau dưới dạng phân số rồi thực hiện phép tính:..
Viết các hỗn số và số thập phân trong phép tính sau dưới dạng phân số rồi thực hiện phép tính:
\(a)0,25 + 1\frac{5}{{12}};b) - 1,4 - \frac{3}{5}\)
Phương pháp giải:
Viết các hỗn số và số thập phân dưới dạng phân số
Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu
Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó
Lời giải chi tiết:
\(\begin{array}{l}a)0,25 + 1\frac{5}{{12}} = \frac{{25}}{{100}} + \frac{{17}}{{12}}\\ = \frac{1}{4} + \frac{{17}}{{12}} = \frac{3}{{12}} + \frac{{17}}{{12}}\\ = \frac{{20}}{{12}} = \frac{5}{3}\\b) - 1,4 - \frac{3}{5}\\ = \frac{{ - 14}}{{10}} - \frac{3}{5} = \frac{{ - 7}}{5} - \frac{3}{5}\\ = \frac{{ - 10}}{5} = - 2\end{array}\)
Tính:
\(a)( - 7) - ( - \frac{5}{8});b) - 21,25 + 13,3.\)
Phương pháp giải:
Áp dụng: a – (-b) = a + b
Cộng 2 số hữu tỉ trái dấu
Lời giải chi tiết:
\(\begin{array}{l}a)( - 7) - ( - \frac{5}{8})\\ = ( - 7) + \frac{5}{8}\\ = \frac{{ - 56}}{8} + \frac{5}{8}\\ = \frac{{ - 51}}{8}\\b) - 21,25 + 13,3\\ = - (21,25 - 13,3)\\ = - 7,95\end{array}\)
Nhắc lại quy tắc cộng và trừ hai phân số rồi thực hiện phép tính:
\(a)\frac{{ - 7}}{8} + \frac{5}{{12}};b)\frac{{ - 5}}{7} - \frac{8}{{21}}\)
Phương pháp giải:
Quy tắc cộng, trừ phân số
Áp dụng quy tắc để tính
Lời giải chi tiết:
+) Quy tắc cộng 2 phân số:
Quy tắc cộng hai phân số cùng mẫu
Muốn cộng hai phân số có cùng mẫu số, ta cộng tử số với nhau và giữ nguyên mẫu số.
Quy tắc cộng hai phân số khác mẫu
Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu.
+) Quy tắc trừ 2 phân số:
* Quy tắc cộng hai phân số cùng mẫu
Muốn trừ 2 phân số có cùng mẫu số, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu.
* Quy tắc cộng hai phân số khác mẫu
Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó
\(\begin{array}{l}a)\frac{{ - 7}}{8} + \frac{5}{{12}}\\ = \frac{{ - 21}}{{24}} + \frac{{10}}{{24}}\\ = \frac{{ - 11}}{{24}}\\b)\frac{{ - 5}}{7} - \frac{8}{{21}}\\ = \frac{{ - 15}}{{21}} - \frac{8}{{21}}\\ = \frac{{ - 23}}{{21}}\end{array}\)
Chú ý:
Ta thường chọn mẫu số chung của các phân số là BCNN của các mẫu số của chúng.
Bỏ dấu ngoặc rồi tính tổng sau:
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\b)6,5 + [0,75 - (8,25 - 1,75)]\end{array}\)
Phương pháp giải:
Khi bỏ dấu ngoặc:
+) Nếu trước dấu ngoặc là dấu (+) thì ta bỏ dấu ngoặc và giữ nguyên dấu của các số hạng trong ngoặc.
+) Nếu trước dấu ngoặc là dấu (-) thì ta bỏ dấu ngoặc và đổi dấu của các số hạng trong ngoặc.
Lời giải chi tiết:
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\ = \frac{9}{{10}} - \frac{6}{5} + \frac{7}{4}\\ = \frac{{18}}{{20}} - \frac{{24}}{{20}} + \frac{{35}}{{20}}\\ = \frac{{18 - 24 + 35}}{{20}}\\ = \frac{{29}}{{20}}\\b)6,5 + [0,75 - (8,25 - 1,75)]\\ = 6,5 + (0,75 - 8,25 + 1,75)\\ = 6,5 + 0,75 - 8,25 + 1,75\\ = 7,25 - 8,25 + 1,75\\ = ( - 1) + 1,75\\ = 0,75\end{array}\)
Nhắc lại quy tắc cộng và trừ hai phân số rồi thực hiện phép tính:
\(a)\frac{{ - 7}}{8} + \frac{5}{{12}};b)\frac{{ - 5}}{7} - \frac{8}{{21}}\)
Phương pháp giải:
Quy tắc cộng, trừ phân số
Áp dụng quy tắc để tính
Lời giải chi tiết:
+) Quy tắc cộng 2 phân số:
Quy tắc cộng hai phân số cùng mẫu
Muốn cộng hai phân số có cùng mẫu số, ta cộng tử số với nhau và giữ nguyên mẫu số.
Quy tắc cộng hai phân số khác mẫu
Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu.
+) Quy tắc trừ 2 phân số:
* Quy tắc cộng hai phân số cùng mẫu
Muốn trừ 2 phân số có cùng mẫu số, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu.
* Quy tắc cộng hai phân số khác mẫu
Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó
\(\begin{array}{l}a)\frac{{ - 7}}{8} + \frac{5}{{12}}\\ = \frac{{ - 21}}{{24}} + \frac{{10}}{{24}}\\ = \frac{{ - 11}}{{24}}\\b)\frac{{ - 5}}{7} - \frac{8}{{21}}\\ = \frac{{ - 15}}{{21}} - \frac{8}{{21}}\\ = \frac{{ - 23}}{{21}}\end{array}\)
Chú ý:
Ta thường chọn mẫu số chung của các phân số là BCNN của các mẫu số của chúng.
Viết các hỗn số và số thập phân trong phép tính sau dưới dạng phân số rồi thực hiện phép tính:
\(a)0,25 + 1\frac{5}{{12}};b) - 1,4 - \frac{3}{5}\)
Phương pháp giải:
Viết các hỗn số và số thập phân dưới dạng phân số
Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu
Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó
Lời giải chi tiết:
\(\begin{array}{l}a)0,25 + 1\frac{5}{{12}} = \frac{{25}}{{100}} + \frac{{17}}{{12}}\\ = \frac{1}{4} + \frac{{17}}{{12}} = \frac{3}{{12}} + \frac{{17}}{{12}}\\ = \frac{{20}}{{12}} = \frac{5}{3}\\b) - 1,4 - \frac{3}{5}\\ = \frac{{ - 14}}{{10}} - \frac{3}{5} = \frac{{ - 7}}{5} - \frac{3}{5}\\ = \frac{{ - 10}}{5} = - 2\end{array}\)
Tính:
\(a)( - 7) - ( - \frac{5}{8});b) - 21,25 + 13,3.\)
Phương pháp giải:
Áp dụng: a – (-b) = a + b
Cộng 2 số hữu tỉ trái dấu
Lời giải chi tiết:
\(\begin{array}{l}a)( - 7) - ( - \frac{5}{8})\\ = ( - 7) + \frac{5}{8}\\ = \frac{{ - 56}}{8} + \frac{5}{8}\\ = \frac{{ - 51}}{8}\\b) - 21,25 + 13,3\\ = - (21,25 - 13,3)\\ = - 7,95\end{array}\)
Bỏ dấu ngoặc rồi tính tổng sau:
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\b)6,5 + [0,75 - (8,25 - 1,75)]\end{array}\)
Phương pháp giải:
Khi bỏ dấu ngoặc:
+) Nếu trước dấu ngoặc là dấu (+) thì ta bỏ dấu ngoặc và giữ nguyên dấu của các số hạng trong ngoặc.
+) Nếu trước dấu ngoặc là dấu (-) thì ta bỏ dấu ngoặc và đổi dấu của các số hạng trong ngoặc.
Lời giải chi tiết:
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\ = \frac{9}{{10}} - \frac{6}{5} + \frac{7}{4}\\ = \frac{{18}}{{20}} - \frac{{24}}{{20}} + \frac{{35}}{{20}}\\ = \frac{{18 - 24 + 35}}{{20}}\\ = \frac{{29}}{{20}}\\b)6,5 + [0,75 - (8,25 - 1,75)]\\ = 6,5 + (0,75 - 8,25 + 1,75)\\ = 6,5 + 0,75 - 8,25 + 1,75\\ = 7,25 - 8,25 + 1,75\\ = ( - 1) + 1,75\\ = 0,75\end{array}\)
Khoai tây là thức ăn chính của người châu Âu và là một món ăn ưa thích của người Việt Nam. Trong 100 g khoai tây khô có 11 g nước; 6,6 g protein; 0,3 g chất béo; 75,1 g glucid và các chất khác.
(Theo Viện Dinh dưỡng Quốc gia)
Em hãy cho biết khối lượng các chất còn lại trong 100 g khoai tây khô.
Phương pháp giải:
Thực hiện phép trừ số hữu tỉ
Tổng khối lượng các chất trong 100 g khoai tây khô là 100 g.
Lời giải chi tiết:
Khối lượng các chất còn lại trong 100 g khoai tây khô là:
100 – 11 – 6,6 – 0,3 – 75,1 = 7 (g)
Khoai tây là thức ăn chính của người châu Âu và là một món ăn ưa thích của người Việt Nam. Trong 100 g khoai tây khô có 11 g nước; 6,6 g protein; 0,3 g chất béo; 75,1 g glucid và các chất khác.
(Theo Viện Dinh dưỡng Quốc gia)
Em hãy cho biết khối lượng các chất còn lại trong 100 g khoai tây khô.
Phương pháp giải:
Thực hiện phép trừ số hữu tỉ
Tổng khối lượng các chất trong 100 g khoai tây khô là 100 g.
Lời giải chi tiết:
Khối lượng các chất còn lại trong 100 g khoai tây khô là:
100 – 11 – 6,6 – 0,3 – 75,1 = 7 (g)
Mục 1 của SGK Toán 7 tập 1 Kết nối tri thức là phần khởi đầu quan trọng, đặt nền móng cho toàn bộ chương trình học. Nó bao gồm các kiến thức cơ bản về tập hợp số, các phép toán trên số tự nhiên và số nguyên, cũng như các tính chất quan trọng của chúng. Việc nắm vững những kiến thức này là điều kiện tiên quyết để giải quyết các bài toán phức tạp hơn trong tương lai.
Dưới đây là phần giải chi tiết các bài tập trong Mục 1, trang 10, 11 và 12 của SGK Toán 7 tập 1 Kết nối tri thức. Chúng tôi sẽ trình bày từng bài tập một cách rõ ràng, dễ hiểu, kèm theo các bước giải cụ thể và giải thích chi tiết để giúp các em hiểu rõ bản chất của bài toán.
Giải: Để sắp xếp các số theo thứ tự tăng dần, ta cần so sánh các số âm và số dương. Số âm có giá trị càng lớn (càng gần 0) thì càng lớn. Số dương có giá trị càng lớn thì càng lớn. Do đó, thứ tự tăng dần của các số đã cho là: -100; -7; -2; 0; 5; 15.
Giải:
Giải:
Để học tốt môn Toán 7, các em cần:
Hy vọng với phần giải chi tiết các bài tập Mục 1 trang 10, 11, 12 SGK Toán 7 tập 1 Kết nối tri thức này, các em sẽ có thêm kiến thức và tự tin hơn trong học tập. Chúc các em học tốt!