Chào mừng các em học sinh đến với bài giải bài 1 trang 13 Vở thực hành Toán 8 của giaitoan.edu.vn. Bài viết này sẽ cung cấp đáp án chi tiết và lời giải dễ hiểu cho bài tập này, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ các em học sinh giải quyết các bài toán một cách hiệu quả nhất.
Cho các biểu thức:
Đề bài
Cho các biểu thức:
\(\frac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\frac{1}{2}{x^2}y;\frac{1}{x}{y^3}; - xy + \sqrt 2 ; - \frac{3}{2}{x^2}y;\frac{{\sqrt x }}{5}.\)
a) Trong các biểu thức đã cho, biểu thức nào là đơn thức, biểu thức nào không là đơn thức?
b) Hãy chỉ ra hệ số và phần biến của mỗi đơn thức đã cho.
c) Viết tổng tất cả các đơn thức trên để được một đa thức. Xác định bậc của đa thức đó.
Phương pháp giải - Xem chi tiết
a) Sử dụng khái niệm đơn thức: Đơn thức là biểu thức đại số gồm một số hoặc một biến, hoặc có dạng tích của những số và biến.
b) Sử dụng kiến thức về hệ số và phần biến của đơn thức: Phần số trong một đơn thức thu gọn gọi là hệ số; phần còn lại là phần biến của đơn thức đó.
c) Sử dụng khái niệm bậc của đa thức: Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.
Lời giải chi tiết
a) Biểu thức \(\frac{1}{x}{y^3}\) không là đơn thức vì chứa biến x ở mẫu số.
Biểu thức \( - xy + \sqrt 2 \) không là đơn thức vì chứa phép cộng với các biến.
Biểu thức \(\frac{{\sqrt x }}{5}\) không là đơn thức vì chứa biến x ở trong căn bậc hai.
Các biểu thức còn lại đều là đơn thức.
b) Các đơn thức là: \(\frac{4}{5}x\) ; \((\sqrt 2 - 1)xy\) ; \( - 3x{y^2}\) ; \(\frac{1}{2}{x^2}y\) ; \( - \frac{3}{2}{x^2}y\) .
- Đơn thức \(\frac{4}{5}x\) có hệ số là \(\frac{4}{5}\) và phần biến là \(x\) .
- Đơn thức \((\sqrt 2 - 1)xy\) có hệ số là \(\sqrt 2 - 1\) và phần biến là \(xy\) .
- Đơn thức \( - 3x{y^2}\) có hệ số là \( - 3\) và phần biến là \(x{y^2}\) .
- Đơn thức \(\frac{1}{2}{x^2}y\) có hệ số là \(\frac{1}{2}\) và phần biến là \({x^2}y\) .
- Đơn thức \( - \frac{3}{2}{x^2}y\) có hệ số là \( - \frac{3}{2}\) và phần biến là \({x^2}y\) .
c) Đa thức tổng của các đơn thức trên là:
\(\begin{array}{l}\frac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy + \left( { - 3x{y^2}} \right) + \frac{1}{2}{x^2}y + \left( { - \frac{3}{2}{x^2}y} \right)\\ = \frac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y.\end{array}\)
Hạng tử có bậc cao nhất là \( - 3x{y^2}\) và \( - {x^2}y\) có bậc là \(1 + 2 = 2 + 1 = 3\) . Vậy bậc của đa thức \(\frac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y\) là 3.
Bài 1 trang 13 Vở thực hành Toán 8 thường thuộc chương trình học về các phép toán với đa thức, hoặc các bài toán liên quan đến phân tích đa thức thành nhân tử. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:
Để cung cấp lời giải chính xác, cần biết nội dung cụ thể của bài 1 trang 13. Tuy nhiên, chúng ta có thể xem xét một số dạng bài tập thường gặp và cách giải:
Ví dụ: Thực hiện phép tính: (2x + 3)(x - 1)
Lời giải:
(2x + 3)(x - 1) = 2x(x - 1) + 3(x - 1) = 2x2 - 2x + 3x - 3 = 2x2 + x - 3
Ví dụ: Phân tích đa thức thành nhân tử: x2 - 4
Lời giải:
x2 - 4 = (x - 2)(x + 2) (Sử dụng hằng đẳng thức hiệu hai bình phương)
Một số bài tập có thể yêu cầu học sinh áp dụng kiến thức về đa thức để giải quyết các bài toán thực tế. Trong trường hợp này, cần đọc kỹ đề bài, xác định các yếu tố liên quan và xây dựng phương trình hoặc biểu thức đại số phù hợp.
Để giải bài tập Toán 8 một cách hiệu quả, học sinh nên:
Ngoài Vở thực hành Toán 8, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 1 trang 13 Vở thực hành Toán 8 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đa thức và các phép toán liên quan. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập môn Toán.
Chúc các em học tốt!